
Data on External Storage
• External Storage: offer persistent data storage• External Storage: offer persistent data storage

– Unlike physical memory, data saved on a persistent
storage is not lost when the system shutdowns orstorage is not lost when the system shutdowns or
crashes.

Types of External Storage Devices
• Magnetic Disks: Data can be retrieved randomly• Magnetic Disks: Data can be retrieved randomly

• Tapes: Can only read pages in sequence• Tapes: Can only read pages in sequence
– Cheaper than disks

• Other types of persistent storage devices:
– Optical storage (CD-R, CD-RW, DVD-R, DVD-RW)Optical storage (CD R, CD RW, DVD R, DVD RW)
– Flash memory

1

• A record is a tuple or a row in a table.
– Fixed-size records or variable-size records

• A file is a collection of records.
– Store one table per file, or multiple tables in the same

file
• A page is a fixed length block of data for disk I/O.

– A file consists of pages.
– A data page contains a collection of records.

• Typical page sizes are 4 and 8 KB• Typical page sizes are 4 and 8 KB.

2

File Organization

h d i il d l• Method of arranging a file of records on external storage.
– Record id (rid) is used to locate a record on a disk
– Indexes are data structures to efficiently search rids of

given values
DB Storage and IndexingDB Storage and Indexing

• Layered Architecture
– Disk Space Manager allocates/de-allocates spaces onDisk Space Manager allocates/de allocates spaces on

disks.
– Buffer manager moves pages between disks and main ff g p g

memory.
– File and index layers organize records on files, and y g ,

manage the indexing data structure.
3

Alternative File Organizations

• Many alternatives exist, each ideal for some situations,
and not so good in others:and not so good in others:
– Heap files: Records are unsorted. Suitable when

typical access is a file scan retrieving all records
without any order.

• Fast update (insertions / deletions)
S d F l R d d B if d– Sorted Files: Records are sorted. Best if records
must be retrieved in some order, or only a `range’ of
records is needed.records is needed.

• Examples: employees are sorted by age.
• Slow update in comparison to heap file.

4

p p p

– Indexes: Data structures to organize records via
trees or hashingtrees or hashing.

• For example, create an index on employee age.
• Like sorted files speed up searches for a• Like sorted files, speed up searches for a

subset of records that match values in certain
(“search key”) fields

• Updates are much faster than in sorted files.

5

Indexes
• An index on a file speeds up selections on the search keyAn index on a file speeds up selections on the search key

fields for the index.
– Any subset of the attributes of a table can be the search

key for an index on the relationkey for an index on the relation.
– Search key does not have to be candidate key

• Example: employee age is not a candidate key.Example: employee age is not a candidate key.
• An index file contains a collection of data entries (called

k*).
Q i kl h i d l d i h– Quickly search an index to locate a data entry with a
key value k.
• Example of a data entry: <age, rid>Example of a data entry: age, rid

– Can use the data entry to find the data record.
• Example of a data record: <name, age, salary>

6

– Can create multiple indexes on the same data records.
• Example indexes: age, salary, name

• Three alternatives for what to store in a data entry:
– (Alternative 1): Data record with key value k(Alternative 1): Data record with key value k

• Example data record = data entry: <age, name, salary>
– (Alternative 2): <k, rid of data record with search key(Alternative 2): k, rid of data record with search key

value k>
• Example data entry: <age, rid>

– (Alternative 3): <k, list of rids of data records with
search key k>

l d id id• Example data entry: <age, rid_1, rid_2, …>
• Choice of alternative for data entries is independent of the

indexing methodindexing method.
– Indexing method takes a search key and finds the data

entries matching the search key.g y
– Examples of indexing methods: B+ trees or hashing.

7

Indexing Example

I d FilIndex File
(Small for
efficientefficient
search)

Data File
(Large)(Large)

8

Index Classification

• Primary vs. secondary: If search key contains primary
key, then called primary index.
– Unique index: Search key contains a candidate key

• Clustered vs. unclustered: If order of data records is
same as, or close to the order of data entries, then it is
called clustered index.
One clustered index and multiple unclustered indexes
– Why is this important?

• Consider the cost of range search query: find all
records 30<age<39

9

Clustered vs. Unclustered Index

• Cost of retrieving data records through index varies
greatly based on whether index is clustered or not!greatly based on whether index is clustered or not!

• Examples: retrieve all the employees of ages 30~39.
Cost number of pages retrieved• Cost = number of pages retrieved

mr = # matched records; mp = # pages containing
matched recordsmatched records

10

11

Hash-Based Indexes

• Good for equality selections.
Data entries (ke rid) are gro ped into b ckets– Data entries (key, rid) are grouped into buckets.

– Bucket = primary page plus zero or more overflow
pagespages.

– Hashing function h: h(r) = bucket in which record r
belongs h looks at the search key fields of rbelongs. h looks at the search key fields of r.

– If Alternative (1) is used, the buckets contain the data
recordsrecords.

12

13

• Search on key value:
– Apply key value to the hash function -> bucket numberApply key value to the hash function > bucket number
– Retrieve the primary page of the bucket. Search

records in the primary page. If not found, search the
overflow pages.

– Cost of locating rids: # pages in bucket (small)
• Insert a record:

– Apply key value to the hash function -> bucket number
If ll (i & fl) i h b k f ll– If all (primary & overflow) pages in that bucket are full,
allocate a new overflow page.

– Cost: similar to search– Cost: similar to search.
• Delete a record

– Cost: Similar to searchCost: Similar to search.

14

Tree-structured Indexing

• Tree-structured indexing techniques support both range
searches and equality searches

• ISAM: static structure;
• B+ tree: dynamic, adjusts gracefully under inserts and

d l tdeletes.

15

Indexed Sequential Access Methods

• File creation: Leaf (data) pages allocated sequentially,
sorted by search key; then index pages allocated, then
space for overflow pagesspace for overflow pages.

• Index entries: <search key value, page id>;
`direct’ search for data entries, which are in leafdirect search for data entries, which are in leaf

pages.
• Search: Start at root; use key comparisons to go to

leaf. Cost log F N ; F = # pointers/index pg, N = #
leaf pgs

• Insert: Find leaf that data entry belongs to and put it• Insert: Find leaf that data entry belongs to, and put it
there, which may be in the primary or overflow area.

• Delete: Find and remove from leaf; if empty overflow

16

Delete: Find and remove from leaf; if empty overflow
page, de-allocate.

Data Pages

Index Pages

Overflow Pages

Static tree structure: inserts/deletes affect only leaf pages.

- Frequent updates may cause the structure to degrade
- Index pages never change

f l h fl- some range of values may have too many overflow
pages
e g inserting many values between 40 and 51e.g., inserting many values between 40 and 51.

17

P K

index entry

P0 K 1 P 1 K 2 P 2 K m P m

Non-leaf
Pages

Pages
Overflow

page

Leaf

Leaf pages contain data entries.

page
Primary pages

18

Root

40

20 33 51 63

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

19

After Inserting 23*, 48*, 41*, 42* ...g , , ,

Root
40Index

Pages

20 33 51 63

Primary

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*Leaf

Pages

23* 48* 41*

42*

Overflow

Pages

Suppose we now delete 42*, 51*, 97*.
20

...Then Deleting 42*, 51*, 97*

Root
40Index

Pages

20 33 51 63

Primary

10* 15* 20* 27* 33* 37* 40* 46* 55* 63*
Leaf

Pages

23* 48* 41*Overflow

Pages

note that 51 still appears in the index page!
21

B+ Tree: The Most Widely Used Index

• Dynamic structure - can be updated without using overflow pages!
• Balanced tree in which internal nodes direct the search and the data entries contain the data.

– Index entries same as ISAM
– Data entries one of the 3 alternatives.

• Main characteristics:• Main characteristics:
– Insert/delete at log F N cost; keep tree height-balanced. (F = fanout,

N = # leaf pages)
– Minimum 50% occupancy (except for root). Each node contains d <= m <= 2d entries. p y (p)

The parameter d is called the order of the tree.
– Supports equality and range-searches efficiently.

• Leaf pages are organized into doubly linked lists

Index EntriesIndex Entries
(Direct search)

Data Entries
("Sequence set")

22

• Search begins at root, and key comparisons direct it to a leaf.
• Search for 5*, 15*, all data entries >= 24* ...

Root

17 24 3013

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

Inserting a Data Entry into a B+ Tree
• Find correct leaf L.
• Put data entry onto L.y

– If L has enough space, done!
– Else, must split L (into L and a new node L2)

• Redistribute entries evenly, copy up middle key.y, py p y
• Insert index entry pointing to L2 into parent of L.

• This can happen recursively
– To split index node, redistribute entries evenly, but push up middle key. (Contrast with p , y, p p y (

leaf splits.)
• Splits “grow” tree; root split increases height.

– Tree growth: gets wider or one level taller at top.
23

Inserting 8* into Example B+ Tree

Ob h Entry to be inserted in parent node.• Observe how
minimum
occupancy is
guaranteed in

5
Entry to be inserted in parent node.
(Note that 5 is
continues to appear in the leaf.)

s copied up and

guaranteed in
both leaf and
index pg splits.

• Note difference

2* 3* 5* 7* 8*

• Note difference
between copy-up
and push-up; be
sure you appears once in the index. Contrast17

Entry to be inserted in parent node.
(Note that 17 is pushed up and only

this with a leaf split)sure you
understand the
reasons for this. 5 24 3013

this with a leaf split.)

24

Example B+ Tree After Inserting 8*

RootRoot

17

2* 3*

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8* 14 16

Notice that root was split, leading to increase in height.

In this example, we can avoid split by re-distributing entries; however,
hi i ll d i ithis is usually not done in practice.

25

Re-Distribution

• Re-distribute entries of a node N with a sibling before splitting the
node

– Improves average occupancy

– Sibling is node that shares the same parent

• Re-distribution requires that we retrieve sibling nodes, check for space.

– If sibling full, need to split anyways!

• Useful in limited scenarios

If leaf node is being split we need to re adjust the double linked– If leaf node is being split, we need to re-adjust the double-linked
list pointers

– Retrieving siblings anyways, so no overhead!

26

• Insertion of 8* into the tree• Insertion of 8* into the tree

Root

17 24 3013

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

Sibling can accommodate an entry – so re-distribute
-re-distribute entries
-Copy-up the new low key value from the second leaf nodeCopy up the new low key value from the second leaf node

27

After Re-distributionAfter Re distribution

Root

17 24 308

2* 3* 5* 7* 8* 14* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*16*

28

Deleting a Data Entry from a B+ Tree

S fi d l f L h b l• Start at root, find leaf L where entry belongs.
• Remove the entry.

– If L is at least half-full, done!
– If L has only d-1 entries,

• Try to re-distribute, borrowing from sibling (adjacent node with
same parent as L).p)

• If re-distribution fails, merge L and sibling.
• If merge occurred, must delete entry (pointing to L or sibling) from parent of

LL.
• Merge could propagate to root, decreasing height.

29

Deleting 19* and then 20*

RootRoot

17

2* 3*

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Deletion of 19* leaf node is not below the minimum number of entries

14 16

after the deletion of 19*. No re-adjustments needed.

Deletion of 20* leaf node falls below minimum number of entries
• re-distribute entries
• copy-up low key value of the second node

30

Root

17

30135 27

2* 3* 14* 16* 33* 34* 38* 39*7*5* 8* 22* 24* 27* 29*

• Deleting 19* is easy.
• Deleting 20* is done with re-distribution. Notice g

how middle key is copied up.

31

... And Then Deleting 24*g

• Must merge.Must merge.
• Observe `toss’ of index

entry (on right), and
`pull down’ of index

30

pull down of index
entry (below). 22* 27* 29* 33* 34* 38* 39*

Root
30135 17

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

32

Example of Non-leaf Re-distribution

• Tree is shown below during deletion of 24*. (What could be a possible initial
tree?)

• In contrast to previous example, can re-distribute entry from left child of root to
right childright child.

Root

22

135 17 20 30

14* 16* 17*18* 20* 33* 34*38* 39*22* 27*29*21*7*5* 8*3*2*

33

After Re-distribution

• Intuitively entries are re-distributed by `pushing through’Intuitively, entries are re distributed by pushing through
the splitting entry in the parent node.

• It suffices to re-distribute index entry with key 20; we’ve
re-distributed 17 as well for illustration.

Root

17

135 3020 22

14* 16* 33* 34* 38* 39*22* 27* 29*17* 18* 20* 21*7*5* 8*2* 3*
34

