
What is a DBMS?

A database-management system (DBMS) is a collection of
i l d d d f h dinterrelated data and a set of programs to access those data

The goal of a DBMS is to store and retrieve databaseThe goal of a DBMS is to store and retrieve database
information

Database System Applications

B ki F t d t i f tiBanking: For customer and accounts information

Airlines: For reservations and schedule information

1

Airlines: For reservations and schedule information

Universities:For student information, course registrations

Credit card transactions

Sales: For customer, product, and purchase information

f i d i i dManufacturing: For production, inventory, orders

Human resources: For employees information salariesHuman resources: For employees information, salaries,
tax deductions

Data base system vs File system

C id f i b k i h k
2

Consider part of a savings-bank enterprise that keeps
information about all customers and savings accounts

One way to keep the information on a computer is toy p p
store it in files

Users can manipulate the files using application
programs, such as

•A program to debit or credit an account

• A program to add a new account

• A program to find the balance of an account

A t t thl t t t
3

• A program to generate monthly statements

New application programs are added to the system as thepp p g y
need arises

h d i f l dThe system stores permanent records in various files, and
it needs different application programs to extract records
from and add records to the appropriate filesfrom, and add records to, the appropriate files

Before database management systems came along, usuallyg y g, y
information used to store in such systems

file-processing system has a number of major
disadvantages:

4

Data redundancy and inconsistency
-Multiple file formats duplication of information in differentMultiple file formats, duplication of information in different

files
-Example: Savings account and Current account

Difficulty in accessing data
N d t it t t h t k-Need to write a new program to carry out each new task
-Example: when new query is asked

Data isolation
-Multiple files and formats

Integrity problems
V l i th d t b t ti f t i t

5

-Values in the database must satisfy constraints
-Hard to add new constraints or change existing ones

Atomicity of updates
-Failures may leave database in an inconsistent state withFailures may leave database in an inconsistent state with

partial updates carried out
-Example: Transfer of funds from one account to another
h ld i h l h ll (i)should either complete or not happen at all (atomic)

Concurrent access by multiple usersConcurrent access by multiple users
-Concurrent access needed for performance
-Uncontrolled concurrent accesses can lead to

inconsistencies
-Example: Two people reading a balance and updating

account at the same timeaccount at the same time

Security problems

6

y p
-Hard to provide user access to some, but not all, data

Database systems offer solutions to all the above problems

View of Data

A major purpose of a database system is to provide users
with an abstract view of the data. That is the system hides

t i d t il f h th d t i t d d i t i dcertain details of how the data is stored and maintained

Data Abstraction

For the system to be usable, it must retrieve data
efficiently

For efficiency designers use complex data structures to

7

For efficiency designers use complex data structures to
represent data in the database

Developers hide the complexity from users through
l l l f b t ti t i lif i t tiseveral levels of abstraction, to simplify users interactions

with the system

View level

. View 1 View 2 View nView 1

Logical level

Physical level

Figure 1.1 The three levels of data abstraction

8

Physical levely

The lowest level of abstraction describes how the data is
ll dactually stored

The physical level describes complex low level dataThe physical level describes complex low-level data
structures in detail

Logical level

The ne t higher le el of abstraction describes hat dataThe next-higher level of abstraction describes what data
is stored in the database, and what relationships exist
among those data

9

among those data

The logical level describes the entire database in terms of a small
number of relatively simple structures

Implementation of the simple structures at the logical level may
involve complex physical-level structures

The user of the logical level does not need to be aware of this
complexity (complex physical-level structures)complexity (complex physical level structures)

Programmers and Administrators work at this level

View level

The highest level of abstraction describes only part of the entire
database

10

The view level of abstraction exists to simplify users interaction
with the system

Example:
struct customerstruct customer
{

customer_id: string;
customer_name: string;
customer_street: string;

t it t icustomer_city: string;
};

A banking enterprise may have several such record types,
includingg
-Account, with fields

account_number and account_balance
E l i h fi ld

11

-Employee, with fields
employee_name and employee_salary

At the physical level, a customer, account, or employee
record can be described as a block of consecutive storagerecord can be described as a block of consecutive storage
locations

At the logical level, each such record is described by a
structure definition, as in the previous code segment, and
the interrelationship of these record types is defined as
well

At the view level, computer users see a set of application
programs that hide details of the data typesprograms that hide details of the data types

At the view level, several views of the database are

12

defined, and database users see these views

The views also provide a security mechanism to prevent
users from accessing certain parts of the databaseusers from accessing certain parts of the database

For example, students can access only their details, theyFor example, students can access only their details, they
cannot able to access other students details.

I d S hInstances and Schemas

Databases change over time as information is inserted andDatabases change over time as information is inserted and
deleted

The collection of information stored in the database at a
particular moment is called an instance of the database

13

The overall design of the database is called the database
schema

The concept of database schemas and instances can be
understood by analogy to a program written in a
programming language

A database schema corresponds to the variable declarations
in a programin a program

The values of the variables in a program at a point in time
correspond to an instance of a database schema

D t b t h l h titi d
14

Database systems have several schemas, partitioned
according to the levels of abstraction

The physical schema describes the database design at the
physical levelp y

The logical schema (conceptual schema) describes the
database design at the logical level

A d t b l h b h t th i l lA database may also have subschemas at the view level,
that describe different views of the database

Programmers develop applications by using the logical
schema

Physical schema is hidden beneath the logical schema,
d b h d il i h ff i li i

15

and can be changed easily without affecting application
programs

Application programs are said to exhibit physical data
i d d if th d t d d th h i lindependence if they do not depend on the physical
schema, and thus need not be rewritten if the physical
schema changesschema changes

Data Models

It describes the design of a database at the logical level

Data model is a collection of tools for describing data,
data relationships, data semantics, and consistencyp , , y
constraints

16

Types of Data Models

Relational Model

The Entity-Relationship Model

Object-based data models (Object-oriented and Object-
relational)

Semistructured data model

Network model

17

Hierarchical model

Relational Model

The relational model uses a collection of tables to represent
both data and the relationships among those data

Example

Figure 1.2 Customer table

18

Figure 1.2 Customer table

The relational model is an example of a record-based
model

Record-based models are so named because the database is
structured in fixed-format records of several types

E h t bl t i d f ti l t E hEach table contains records of a particular type. Each
record type defines a fixed number of fields, or attributes

The columns of the table correspond to the attributes of
the record type

The relational data model is the most widely used data
d l

19

model

Entity-Relationship Model

The entity-relationship (E-R) data model is a collection of
entities and relationships among these entitiesentities and relationships among these entities

An entity is a “thing” or “object” in the real world that isy g j
distinguishable from other objects

For example, each person is an entity, and bank accounts
can be considered as entities

Entities are described in a database by a set of attributes

20

For example, the attributes account-number and
balance may describe one particular account in a bank,
and they form attributes of the account entity set

Attributes customer-name, customer-street and
customer-city may describe a customer entitycustomer-city may describe a customer entity

A relationship is an association among several entitiesp g

For example, a depositor relationship associates a
customer with each account that he has

21

The set of all entities of the same type is called an entity
set

The set of all relationships of the same type is calledThe set of all relationships of the same type is called
relationship set

The overall logical structure (schema) of a database can
be expressed graphically by an E-R diagram, which is
built up from the following components:

Rectangles which represent entity setsRectangles, which represent entity sets

Ellipses, which represent attributes

22

Ellipses, which represent attributes

Diamonds, which represent relationships among entity
setssets

Lines, which link attributes to entity sets and entity, y y
sets to relationships
Example

23
Figure 1.3

Object-based data models (Object-oriented and Object-
relational))

Object-oriented data model can be seen as extending the
d l i h i f l i h dE-R model with notations of encapsulation, methods

(functions), and object identity
The object relational data model combines features ofThe object-relational data model combines features of

the object-oriented data model and relational data
model

Semistructured data model

Semistructured data models permit the specification of
data where individual data items of the same type may

24

data where individual data items of the same type may
have different sets of attributes

This is in contrast with the data models mentioned
li h d i f i learlier, where every data item of a particular type must

have the same set of attributes

The extensible markup language (XML) is widely used
to represent semistructured datap

Network model

Data in this model is represented by collection of
records and relationships among data are connected byrecords and relationships among data are connected by
links

25

22 Dustin 7 45 0 101 10/10/9822 Dustin 7 45.0 101 10/10/98

31 Lubber 8 55.5 102 11/10/98

74 Horatio 9 35.0 103 09/08/98

Hierarchical model

i hi l d l i h k d lHierarchical model is same as the network model

In this model records are represented in the form ofIn this model records are represented in the form of
tree

26

22 Dustin 7 45.0 31 Lubber 8 55.5

101 10/10/98 102 11/10/98

Database Languages

A database system providesy p
--data definition language to specify the database

schema
--data manipulation language to express database

queries and updates
data control language to t l d t b

27

--data control language to control a database

In practice these are not separate languages; instead
they simply form parts of a single database language,they simply form parts of a single database language,
such as SQL language

Data-Definition Language

This supports the creation deletion and modificationThis supports the creation, deletion, and modification
of definitions for tables, views and indexes

The following statement in the SQL language creates
the account table:

create table account
(account number varchar2(10)

28

(account-number varchar2(10),
balance number(5))

Execution of the above DDL statement creates the
account table

In addition it pdates a special set of tables called theIn addition, it updates a special set of tables called the
data dictionary or data directory

A data dictionary contains metadata-that is, data about
data

The schema of a table is an example of metadata

A database system consults the data dictionary before
reading or modifying actual data

29

reading or modifying actual data

The data stored in the database must satisfy certain
consistency constraintsconsistency constraints

The DDL provides facilities to specify such constraintsp p y

The database systems check these constraints every time
h d b i d dthe database is updated

30

Data-Manipulation Language

Data manipulation is
--The retrieval of information stored in the databasee e ev o o o s o ed e d b se
--The insertion of new information into the database
--The deletion of information from the database
--The modification of information stored in the database

A d t i l ti l (DML) i lA data-manipulation language (DML) is a language
that enables users to access or manipulate data

There are of two types:
Procedural DMLs require a user to specify what data is

31

needed and how to get those data

Declarative DMLs (also referred to as nonprocedural
DMLs) require a user to specify what data is neededDMLs) require a user to specify what data is needed
without specifying how to get those data

This query in the SQL language finds the name of the
customer whose customer-id is 192-83-7465:

l tselect customer-name
from customer
where customer-id = '192-83-7465'where customer-id = 192-83-7465

Data-Control Language
This subset of SQL controls a database, including

administrative privileges and saving data

32
SQL is nonprocedural Language

Database Access from Application Programs

Application programs are used to interact with the
database

Application programs are usually written in a language,
such as C, C++, or Java

Examples in a banking system are programs that debitExamples in a banking system are programs that debit
accounts, credit accounts, or transfer funds between
accountsaccounts

To access the database, DML statements need to be

33

executed from the host language

There are two ways to do this:

By providing an application program interface (set of
proced res) that can be sed to send DML and DDLprocedures) that can be used to send DML and DDL
statements to the database, and retrieve the results

--The Java Database Connectivity (JDBC) with the
Java language is a commonly used application program
interface standard

B di h h l b d DMLBy extending the host language syntax to embed DML
calls within the host language program

34

--Usually, a special character prefaces DML calls, andy p p
a preprocessor, called the DML precompiler, converts the
DML statements to normal procedure calls in the host
llanguage

Database Users and AdministratorDatabase Users and Administrator

People who work with a database can be categorized as
database users or database administrator

35

Database Users and User Interfaces

There are four different types of database-system users

Different types of user interfaces have been designed for
the different types of usersyp

1.Naive users: users who interact with the system by
invoking one of the application programs that have been
written previously

(Naive users are users who do not have knowledge about
the system)

36

the system)

They uses forms interface where the users can fill inThey uses forms interface, where the users can fill in
appropriate fields of the form

Ex1:transfer $50 from account A to account B

h f b f d-user has to enter amount of money to be transferred,
-account from which the money is to be transferred
account to which the money is to be transferred-account to which the money is to be transferred

Ex2: finding account balance over the Internet. userg
may access a form, where he enters his account number

37

2.Application programmers: computer professionals
who write application programs

Application programmers can choose from many tools to
d l i fdevelop user interfaces

-Rapid Application Development (RAD) tools enable an-Rapid Application Development (RAD) tools enable an
application programmer to construct forms and reports
without writing a programg p g

-Fourth-generation languages, include features to
facilitate the generation of forms and the display of data
on the screen
Most major commercial database systems include a

38

-Most major commercial database systems include a
fourth-generation language

3.Sophisticated users interact with the system without
writing programswriting programs

-They form their requests in a database query language.

-Analysts who submit queries to explore data

‐Online Analytical Processing (OLAP) tools simplify
analysts tasks by letting them view summaries of data inanalysts tasks by letting them view summaries of data in
different ways

Ex: an analyst can see total sales by region (for example,
North, South, East, and West), or by product, or by a

39

combination of region and product (that is, total sales

of each product in each region)

-Data mining tools, help analysts to find certain kinds of
patterns in data.patterns in data.

4.Specialized users: users who write specialized database
applications

C t id d d i t k l d b d-Computer-aided design systems, knowledge-base and
expert systems, systems that store data with complex data
types (for example graphics data and audio data) andtypes (for example, graphics data and audio data), and
environment-modeling systems

40

Database Administrator

A person who has central control over both the data and
the programs that access those data is called a databasep g
administrator (DBA)

The functions of a DBA include:

Schema definition The DBA creates the original-Schema definition. The DBA creates the original
database schema by executing a set of data definition
statements in the DDLstatements in the DDL

-Storage structure and access-method definition.

41

-Schema and physical-organization modification. The
DBA carries out changes to the schema to reflect the
changing needs of the organization, or to improve the
performanceperformance

-Granting of authorization for data access. By grantingGranting of authorization for data access. By granting
different types of authorization, the DBA can regulate
which parts of the database various users can access.

--The authorization information is kept in a file that the
d b l hdatabase system consults whenever someone attempts to
access the data in the system

42

-Routine maintenance.

Activities such as:

-Periodically backing up the database, either onto tapes or
onto remote servers, to prevent loss of data in case of
disasters such as flooding

E i th t h f di k i il bl f-Ensuring that enough free disk space is available for
normal operations, and upgrading disk space as required

-Monitoring jobs running on the database and ensuring
that performance is not degraded by very expensive tasks

43

p g y y p
submitted by some users

Transaction Management

A transaction is a collection of operations that performs
a single logical function in a database applicationg g pp

Ex: Funds transfer in which one account (say A) is
debited and another account (say B) is credited

It is essential that either both the credit and debit occ rIt is essential that either both the credit and debit occur,
or that neither occur

Either all operations of the transaction are reflected
properly in the database, or none are. This requirement is

44

called atomicity

Execution of the funds transfer must preserve thep
consistency of the database. That is, the value of the
sum A + B must be preserved. This requirement is called

iconsistency

Isolation: each transaction is unaware of otherIsolation: each transaction is unaware of other
transactions executing concurrently in the system

After the successful execution of a funds transfer, the new
values of accounts A and B must persist, despite the
possibility of system failure. This requirement is called
durability

45

We require that transactions do not violate any database-
consistency constraintsy

That is, if the database was consistent when a transaction
started, the database must be consistent when the
transaction successfully terminates

It is the programmer’s responsibility to define properly
the various transactions so that each preserves thethe various transactions, so that each preserves the
consistency of the database

For example, the transaction to transfer funds from
account A to account B could be defined to be composed

f h d bi A d
46

of two separate programs: one that debits account A, and
another that credits account B

The execution of these two programs one after the other
will indeed preserve consistencywill indeed preserve consistency

Ensuring the atomicity and durability properties is theEnsuring the atomicity and durability properties is the
responsibility of the database system itself—specifically,
of the transaction-management component

If we are to ensure the atomicity property, a failed
t ti t h ff t th t t f thtransaction must have no effect on the state of the
database

Thus, the database must be restored to the state that
existed prior to the starting of the transaction

47

p g

The database system must therefore perform failure
recovery that is detect system failures and restore therecovery, that is, detect system failures and restore the
database to the state that existed prior to the occurrence of
the failure

Finally, when several transactions update the database
concurrently, the consistency of data may no longer be
preserved, even though each individual transaction is
correctcorrect

It is the responsibility of the concurrency-controlIt is the responsibility of the concurrency control
manager to control the interaction among the concurrent
transactions, to ensure the consistency of the database

48

Note: each transaction possess ACID properties

Database System Structure

The functional components of a database system can be
broadly divided into the storage manager and the query
processor components

Th t i i t t b d t bThe storage manager is important because databases
typically require a large amount of storage space

Corporate databases range in size from hundreds of
gigabytes to, for the largest databases, terabytes of datag g y g y

A gigabyte is 1000 megabytes and a terabyte is 1000
i b

49

gigabytes

Since the main memory of computers cannot store this
h i f i hi i f i i d di kmuch information, so this information is stored on disks

Data is moved between disk storage and main memory asData is moved between disk storage and main memory as
needed

The query processor is important because it helps the
database system simplify and facilitate access to data

High-level views help to achieve this goal

The job of the database system is to translate queries
written in a non procedural language, into an efficient

50

written in a non procedural language, into an efficient
sequence of operations at the physical level

51Fig 1.4 DBMS structure

Storage Manager

A storage manager is a module that provides the
interface between the low-level data stored in theinterface between the low level data stored in the
database and the application programs and queries
submitted to the system

The storage manager is responsible for the interaction
ith th filwith the file manager

The raw data is stored on the diskThe raw data is stored on the disk

The storage manager is responsible for storing,

52

g g p g,
retrieving, and updating data in the database

The storage manager components include:

-Authorization and integrity manager, which tests for
the satisfaction of integrity constraints and checks thethe satisfaction of integrity constraints and checks the
authority of users to access data

-Transaction manager, which ensures that the database
remains in a consistent (correct) state despite system
failures, and that concurrent transaction executions
proceed without conflicting

-File manager, which manages the allocation of space on
disk storage and the data structures used to represent

53

disk storage and the data structures used to represent
information stored on disk

-Buffer manager, which is responsible for fetching data
from disk storage into main memory, and deciding whatg y, g
data to cache in main memory

The storage manager implements several data structures
as part of the physical system implementation:

-Data files, which store the database itself

-Data dictionary, which stores metadata about the
structure of the database, in particular the schema of the
database

I di hi h id f d i h h ld
54

-Indices, which provide fast access to data items that hold
particular values

The Query Processor

The query processor components include

-DDL interpreter, which interprets DDL statements and
records the definitions in the data dictionary

‐DML compiler, which translates DML statements in a
q er lang age into an e al ation plan consisting of loquery language into an evaluation plan consisting of low-
level instructions that the query evaluation engine
understandsunderstands

--A query can usually be translated into any of a number

55

of alternative evaluation plans that all give the same result

--The DML compiler also performs query optimization,
that is it picks the lowest cost evaluation plan fromthat is, it picks the lowest cost evaluation plan from
among the alternatives

-Query evaluation engine, which executes low-level
instructions generated by the DML compiler

56

History of Database Systems

Techniques for data storage and processing have evolved
over the years:over the years:

1950s and early 1960s:y

Magnetic tapes were developed for data storage

Data processing tasks such as payroll were automated,
with data stored on tapes (Processing of data consist ofwith data stored on tapes (Processing of data consist of
reading data from one or more tapes and writing data to a
new tape)new tape)

57

Data could also be input from punched card decks, and
output to printers

Ex: salary raises were processed by entering the raises
h d d d di h h d d d k ion punched cards and reading the punched card deck in

synchronization with a tape containing the master salary
details; The records had to be in the same sorted orderdetails; The records had to be in the same sorted order

The salary raises would be added to the salary read fromy y
the master tape, and written to a new tape; the new tape
would become the new master tape

Data sizes were much larger than main memory

In Tapes only sequential accessing is possible
58

Late 1960s and 1970s:

Use of hard disks in the late 1960s changed the
scenario for data processing greatly since hard disksscenario for data processing greatly, since hard disks
allowed direct access to data

Data in any location on disk could be accessed in just
tens of milliseconds

In hard disks random accessing is possible

Network and hierarchical databases could be created
that allowed data structures such as lists and trees to bethat allowed data structures such as lists and trees to be
stored on disk

59

Programmers could construct and manipulate these data
structuresstructures

In 1970s relational databases were bornIn 1970s relational databases were born

1980s:

The relational model was not used in practice initially,
b f it f di d tbecause of its performance disadvantages

Relational databases could not match the performance ofRelational databases could not match the performance of
existing network and hierarchical databases

60

IBM Company developed techniques for the
i f ffi i l ti l d t bconstruction of an efficient relational database system

By the early 1980s relational databases had becomeBy the early 1980s, relational databases had become
competitive with network and hierarchical database
systems even in the area of performancey p

Relational databases were so easy to use that they
eventually replaced network/hierarchical databases

In the 1980s the relational model has reigned supremeIn the 1980s, the relational model has reigned supreme
among data models

61

The 1980s also saw much research on parallel and
distributed databases as well as initial work on objectdistributed databases, as well as initial work on object-
oriented databases

Early 1990s:

The SQL language was designed for transaction
processing applications of databases in the 1980s

Querying emerged as a major application area for
databasesdatabases

Tools for analyzing large amounts of data saw largey g g g
growths in usage

62

Many database vendors introduced parallel database
d t i thi i dproducts in this period

Database vendors also began to add object-relationalDatabase vendors also began to add object-relational
support to their databases

Late 1990s:

h j h l i h f hThe major event was the explosive growth of the
WorldWideWeb

Database systems also had to support Web interfaces to
data

63

Databases were deployed much more extensively than
ever beforeever before

Database systems now had to support very highDatabase systems now had to support very high
transaction processing rates, as well as very high
reliability and 24×7 availability (availability 24 hours a
day, 7 days a week, meaning no downtime for scheduled
maintenance activities)

64

Database Design

The database design process can be divided into six
steps. The ER model is most relevant to the first threep
steps:

() i i(1) Requirements Analysis:

The first step in designing a database application is toThe first step in designing a database application is to
understand what data is to be stored in the database

We must find out what the users want from the database

This is usually an informal process
65

--That involves discussions with user groups,

--Study of the current operating environment and
how it is expected to change,how it is expected to change,

--Analysis of any available documentation on
existing applications that are expected to be replaced

S l th d l i h b d fSeveral methodologies have been proposed for
organizing and presenting the information gathered in this
step and some automated tools have been developed tostep, and some automated tools have been developed to
support this process

66

(2) Conceptual Database Design:

The information gathered in the requirements analysis
step is used to develop a high-level description of the
data to be stored in the database, along with the
constraints that are known to hold over this data

This step is often carried out using the ER model, or a
similar high-level data modelsimilar high level data model

(3) Logical Database Design:

We must choose a DBMS to implement our database
d i d h l d b d i idesign, and convert the conceptual database design into a
database schema in the data model of the chosen DBMS67

The task in the logical design step is to convert an ER
h i t l ti l d t b hschema into a relational database schema

The result is a conceptual schema sometimes called theThe result is a conceptual schema, sometimes called the
logical schema, in the relational data model

Beyond ER Design

Th ER di i d i i f h d dThe ER diagram is description of the data, constructed
through the information collected during requirements
analysisanalysis

A more careful analysis can often refine the logicaly g
schema obtained at the end of Step 3

68

Once we have a good logical schema, we must consider
performance criteria and design the physical schemap g p y

Finally, we must address security issues and ensure that
users are able to access the data they need, but not data
that we wish to hide from them

The remaining three steps of database design are briefly
described belowdescribed below

(4) Schema Refinement:

The fourth step in database design is to analyze the
ll i f l i i l i l d b hcollection of relations in our relational database schema

to identify potential problems, and to refine it 69

Schema can be refined using normalization

(5) Physical Database Design:

In this step we must consider typical expected
workloads that our database must support and further
refine the database design to ensure that it meets desired
performance criteria

70

This step may simply involve building indexes on some
bl d l i bltables and clustering some tables, or

it may involve a redesign of parts of the databaseit may involve a redesign of parts of the database
schema obtained from the earlier design steps

(6) Security Design:

We identify different user groups and different roles
played by various users (e.g., the development team for a
product the customer support representatives theproduct, the customer support representatives, the
product manager)

71

For each role and user group, we must identify the parts
of the database that they must be able to access and the
parts of the database that they should not be allowed to

d t k t t th t th laccess, and take steps to ensure that they can access only
the necessary parts

Complete database design will probably require a
subsequent tuning phase in which all six kinds of design
steps are interleaved and repeated until the design is
satisfactory

72

ENTITIES, ATTRIBUTES, AND ENTITY SETS

An entity is an object in the real world that is
distinguishable from other objectsdistinguishable from other objects

Examples: toy, the toy department, the manager of thep y, y p , g
toy department, the home address of the manager of the
toy department

An entity set is a collection of similar entities

We could define an entity set called Employees that
contains employee entitiescontains employee entities

73

An entity is described using a set of attributes

All entities in a given entity set have the same attributes

For example, the Employees entity set could use name,
social security number (ssn), and parking lot (lot) asy (), p g ()
attributes

For each attribute associated with an entity set, we must
identify a domain of possible values

For example, the domain associated with the attribute
name of Employees might be the set of 20-charactername of Employees might be the set of 20 character
strings

74

As another example, if the company rates employees on
l f 1 10 d i i fi ld ll da scale of 1 to 10 and stores ratings in a field called

rating, the associated domain consists of integers 1
through 10through 10

Further, for each entity set, we choose a key, y , y

A key is a minimal set of attributes whose values
uniquely identify an entity in the set

There could be more than one candidate key; if so weThere could be more than one candidate key; if so, we
designate one of them as the primary key

75

The Employees entity set with attributes ssn, name, and
l i h i Fi 2 1lot is shown in Figure 2.1

An entity set is represented by a rectangle and anAn entity set is represented by a rectangle, and an
attribute is represented by an ellipse

Each attribute in the primary key is underlined

The key is ssn

76

RELATIONSHIPS AND RELATIONSHIP SETS

A relationship is an association among two or more
entities

For example, we may have the relationship that John works
in the pharmac departmentin the pharmacy department

77

As with entities, we may wish to collect a set of similar
l i hi i l ti hi trelationships into a relationship set

A relationship set can be thought of as a set of n tuples:A relationship set can be thought of as a set of n-tuples:

Each n-tuple denotes a relationship involving n entities e1
through en, where entity e1 is in entity set E1

Figure 2 2 shows the relationship set Works In in whichFigure 2.2 shows the relationship set Works_In, in which
each relationship indicates a department in which an
employee worksemployee works

78

For example, we could also have a Manages relationship
set involving Employees and Departmentsset vo v g p oyees a d epa t e ts

A relationship can also have descriptive attributes

79

Descriptive attributes are used to record information about
the relationship, rather than about any one of thethe relationship, rather than about any one of the
participating entities

For example, we may wish to record that John works in the
pharmacy department as of January 1991

This information is captured in Figure 2.2 By adding an
attribute since to Works Inattribute, since, to Works_In

A relationship must be uniquely identified by thep q y y
participating entities, without reference to the descriptive
attributes

80

In the Works_In relationship set, for example, each
W k I l ti hi t b i l id tifi d b thWorks_In relationship must be uniquely identified by the
combination of employee ssn and department did

An instance of a relationship set is a set of relationships

An instance can be thought of as a 'snapshot' of the
relationship set at some instant in time

An instance of the Works_In relationship set is shown in
Figure 2 3Figure 2.3

81

82

As another example of an ER diagram, suppose that each
department has offices in several locations and we want top
record the locations at which each employee works

This relationship is ternary because we must record an
association between an employee, a department, and a
l tilocation

The ER diagram for this variant of Works In which weThe ER diagram for this variant of Works_In, which we
call Works_In2, is shown in Figure 2.4

83

84

The entity sets that participate in a relationship set need not
be distinct

Sometimes a relationship might involve two entities in the
same entity setsame entity set

For example, consider the Reports To relationship set thatp , p _ p
is shown in Figure 2.5

Since employees report to other employees, every
relationship in Reports_To is of the form (emp1,emp2),
where both emp and emp are entities in Employeeswhere both emp1 and emp2 are entities in Employees

However, they play different roles: emp1 reports to theHowever, they play different roles: emp1 reports to the
managing employee emp2, which is reflected in the role
indicators supervisor and subordinate in Figure 2.5 85

If an entity set plays more than one role, the role indicator
concatenated with an attribute name from the entity set

i i f h tt ib t i th l ti higives us a unique name for each attribute in the relationship
set

86

For example, the Reports_To relationship set has attributes
corresponding to the ssn of the supervisor and the ssn of thep g p
subordinate, and the names of these attributes are
supervisor_ssn and subordinate_ssn

87

ADDITIONAL FEATURES OF THE ER MODEL

Key Constraints:

Consider relationship set called Manages between the
Employees and Departments entity sets such that each
d t t h t t lth h i ldepartment has at most one manager, although a single
employee is allowed to manage more than one department

The restriction that each department has at most one
manager is an example of a key constraint

This restriction is indicated in the ER diagram of Figure
2 6 b i f D M2.6 by using an arrow from Departments to Manages

88

An instance of the Manages relationship set is shown inAn instance of the Manages relationship set is shown in
Figure 2.7

89

90

A relationship set like Manages is sometimes said to be
one-to-many

In contrast the Works In relationship set is said to beIn contrast, the Works_In relationship set is said to be
many-to-many

If we add the restriction that each employee can manage at
most one department to the Manages relationship set, which
would be indicated by adding an arrow from Employees to
Manages in Figure 2.6, we have a one-to-one relationship

tset

91

Key Constraints for Ternary Relationships

To indicate a key constraint on entity set E in relationship
set R we draw an arrow from E to Rset R, we draw an arrow from E to R

In Figure 2.8, we show a ternary relationship with keyg , y p y
constraints

Here key constraint specifies that, each employee works in
at most one department, and at a single location

92

93

An instance of the Works_In3 relationship set is shown in
Figure 2.9g

Notice that each department can be associated with several
employees and locations, and each location can be
associated with several departments and employees;
h h l i i t d ith i lhowever, each employee is associated with a single
department and location

94

95

Participation Constraints

Every department is required to have a manager. This
requirement is an example of a participation constraint

The participation of the entity set Departments in the
l i hi M (Fi 2 7) i id b t t lrelationship set Manages (Fig 2.7) is said to be total

A participation that is not total is said to be partialA participation that is not total is said to be partial

As an example, the participation of the entity setp , p p y
Employees in Manages (Fig 2.7) is partial, since not every
employee gets to manage a department

96

In the Works In relationship set (Fig 2.3), the participation_ p (g), p p
of both Employees and Departments is total

The ER diagram in Figure 2.10 shows both the Manages
and Works_In relationship sets and all the given constraints

If the participation of an entity set in a relationship set is
total the two are connected by a thick line; the presence oftotal, the two are connected by a thick line; the presence of
an arrow indicates a key constraint

97

98

Weak Entities

Entity set which does not have a key is called weak entity
set

Dependents is an example of a weak entity set

A weak entity can be identified uniquely only by
considering some of its attrib tes in conj nction ith theconsidering some of its attributes in conjunction with the
primary key of another entity set, which is called the
identifying owneridentifying owner

99

The following restrictions must hold:The following restrictions must hold:

-The owner entity set and the weak entity set must
participate in a one-to-many relationship set. This
relationship set is called the identifying relationship set of
h k ithe weak entity set

-The weak entity set must have total participation in the-The weak entity set must have total participation in the
identifying relationship set

100

For example, a Dependents entity can be identified
uniquely by key ssn of Employees entity set and theq y y y p y y
attribute pname of the Dependents entity set

The set of attributes of a weak entity set that uniquely
identify a weak entity for a given owner entity is called a
partial key of the weak entity set In our example pname ispartial key of the weak entity set. In our example pname is
a partial key for Dependents

The Dependents weak entity set and its relationship to
Employees is shown in Figure 2.11

The total participation of Dependents in Policy is indicated
b li ki th ith d k liby linking them with a dark line

101

The arrow from Dependents to Policy indicates that each
Dependents entity appears in at most one Policyp y pp y
relationship

To identify Dependents is a weak entity and Policy is its
identifying relationship, we draw both with dark lines

102

To indicate that pname is a partial key for Dependents, we
d li it i b k liunderline it using a broken line

Class HierarchiesClass Hierarchies

Sometimes it is natural to classify the entities in an entityy y
set into subclasses

F l i h lk b H l EFor example, we might want to talk about an Hourly_Emps
entity set and a Contract_Emps entity set to distinguish the
basis on which they are paidbasis on which they are paid

103

We might have attributes hours_worked and hourly_wages
defined for Hourly Emps and an attribute contractid definedy_ p
for Contract_Emps

The attributes defined for an Hourly_Emps entity set are
the attributes for Employees plus Hourly_Emps

The attributes for the entity set Employees are Inherited
by the entity set Hourly Emps and that Hourly Emps ISAby the entity set Hourly_Emps, and that Hourly_ Emps ISA
(read is a) Employees

Figure 2.12 illustrates the class hierarchy

Th i E l l b l ifi d iThe entity set Employees may also be classified using a
different criterion 104

105

For example, we might identify a subset of employees as
Senior Emps_ p

A class hierarchy can be viewed in one of two ways:
--Employees (the superclass) is specialized into

subclasses. subclass-specific attributes are then added
H l E d C t t E generali ed b--Hourly_Emps and Contract_Emps are generalized by

Employees. As another example, two entity sets Motorboats
and Cars may be generalized into an entity set Motorand Cars may be generalized into an entity set Motor_
Vehicles

We can specify two kinds of constraints with respect to ISA
hierarchies, namely, overlap and covering constraints

106

Overlap constraints determine whether two subclasses are
allowed to contain the same entity

For example, can John be both an Hourly_Emps entity and
C E i ?a Contract_Emps entity? …no

Can he be both a Contract Emps entity and a Senior EmpsCan he be both a Contract_Emps entity and a Senior_Emps
entity? …yes

We denote this by writing 'Contract_Emps OVERLAPS
Senior_Emps'

Covering constraints determine whether the entities in the
subclasses collectively include all entities in the superclasssubclasses collectively include all entities in the superclass

107

For example, does every Employees entity have to belong
to one of its subclasses? …no

Does every Motor_Vehicles entity have to be either a
Motorboats entity or a Cars entity? yesMotorboats entity or a Cars entity? …yes

We denote this by writing 'Motorboats AND Cars COVERy g
Motor_Vehicles'

A iAggregation
Sometimes we have to model a relationship between a

collection of entities and relationshipscollection of entities and relationships

Aggregation allows us to indicate that a relationship setgg g p
(identified through a dashed box) participates in another
relationship set.This is illustrated in Figure 2.13 108

109

Use aggregation when we need to express a relationship
among relationships

CONCEPTUAL DESIGN FOR LARGE ENTERPRISESCONCEPTUAL DESIGN FOR LARGE ENTERPRISES

Designing database for large enterprise takes efforts ofDesigning database for large enterprise takes efforts of
more than one designer

It diagrammatically represents the complete database and
enables the user who provide inputs to database, to

nderstand the complete f nctionalit of databaseunderstand the complete functionality of database

110

Large databases are modeled in two methodologies:g g
(I) -The requirements of all the users are collected

-The conflicting requirements are resolved and a final
l i i d h i fi h iconceptual view is generated that satisfies the requirements

of all users

(II)-The user provides his requirements, the designer
generates a conceptual view from these requirementsg p q

-Likewise all the conceptual views from all user
requirements are generated

-Comprehensive conceptual view that satisfies all the
requirements is generated

111

