Structured Query Language

(SQL)

*SQL 1s the most widely used commercial relational
database language

THE FORM OF ABASIC SQL QUERY

SELECT [DISTINCT] field names
FROM table names
WHERE condition

sSELECT clause contains fields to be displayed in the

result
"FROM clause contains table names
=Optional WHERE clause contains conditions on the tables

mentioned in the FROM clause

Attribute

Example (or) Field

| sid | snafme | rating | age
| 22 | Dustin | 7 45.0
29 | Brutus | 1 33.0
Record/r—%-] Luth- E_ 8 | 55.5
(or) ', 32 :"Lnf_h 8 20.5
Tuple | 58 | Rusty |10 | 35.0
64 | Horatio | 7 30.0
71 Zorba 10 | 16.0
74 | Horatio | 9 | 35.0
25 | Art 3 | 25, D |

05 [Bob |3 | 635 |

Fig 4.1 Sailors table

Question: Find the names and ages of all sailors

Query: SELECTsname, age
FROM Sailors

Output: sname | age
Dustin | A45.0
Brutus | 33.0 |
Lubber 55.5 !
 Andy 25.5
Ru-}tﬂ.e S
oratio 35;15
Zorba 16.0
At 25,0
Bob | 63.5 |

Note: The DISTINCT keyword can be used to return only
distinct (different) values from the specific field

4

Question: Find the names and ages of all sailors

Query: SELECT sname, age
FROM Sailors

Output:
STLOTTLE age

Dustin 45.

0

Brutus .

Lublber H55.5
5
0

And- 25.
| Rustw 35.

At 5
C Bob G

-
.
-
=t
C
X

I
-y

Question: Find all sailors with a rating above 7

Query:

Output:

SELECT sid, sname, rating, age
FROM Sailors
WHERE rating >7
(or)
SELECT @
FROM Sailors
WHERE rating>7

31 | L ubber | r 3 00.0
132 Jlndy 8 IR
E Huﬁt-}f 10 | 350

71 | Zorba | 10 i_lﬁ\.{]
74 | Horatio |9 | 35.0

*The SQL language has Three parts

-Data Definition Language (DDL)
-Data Manipulation Language (DML)
-Data Control Language(DCL)

Data Definition Language (DDL):

*DDL supports the creation, deletion, and modification of
definitions for tables and views

"[ntegrity constraints can be defined on tables, either when
the table 1s created or later

"]t also provide commands for creating and deleting
indexes

Data Manipulation Language (DML):

sDML allows users to pose queries to insert, delete, and
modify rows

Data Control Language (DCL):

*DCL controls a database, including administrative
privileges and saving data

DDL Commands
-CREATE
-ALTER
-DROP
-TRUNCATE

CREATE command

mUsed to create table

Syntax:
CREATE TABLE table-name (Fieldnamel data type,

Fieldname?2 data type,)

Example

CREATE TABLE Sailors (std NUMBER(2), sname
VARCHAR2(20), rating NUMBER(2))

ALTER command
Adding a new field In to the existing relation

Syntax: ALTER TABLE tablename
ADD (fieldname Field datatype)

Example: ALTER TABLE Sailors
ADD (age NUMBER(2))

Modifying an existing field

Syntax: ALTER TABLE tablename
MODIFY (fieldname new field datatype)

Example

ALTER TABLE Sailors MODIFY (age NUMBER(3,1))

Deleting an existing field

Syntax: ALTER TABLE tablename
DROP COLUMN Fieldname

Example: ALTER TABLE Sailors DROP COLUMN age

DROP command

*Used to delete an existing table
Syntax: DROP TABLE tablename
Example: DROP TABLE Sailors

TRUNCATE command

sTRUNCATE Removes all rows from a table without
backup

Syntax: TRUNCATE table tablename
Example: TRUNCATE table Sailors

DML Commands
-INSERT
-DELETE
-UPDATE
-SELECT

INSERT command
Inserting record into a table

Syntax: INSERT INTO table-name VALUES
(field1,field2,...)

Example:

INSERT INTO Sailors values (22,'Dustin’,7,45.0)

Inserting a record that has some null attributes
"Requires 1dentifying the fields that actually get data
Syntax: INSERT INTO table-name (field1,ficld4) VALUES

(valuel,value2)

Inserting records from another table
Syntax: INSERT INTO table namel SELECT * FROM

table name?2

UPDATE command
For modifying attribute values of (some) tuples in a table

Syntax: UPDATE tablename SET columnl=valuel,...,
columnn=valuen WHERE condition
Example: UPDATE Sailors SET age=34.5 WHERE s1d=22

DELETE command
Removing specified rows from a table

Syntax: DELETE FROM tablename WHERE condition
Example: DELETE FROM Sailors WHERE sid=22

14

Removing all rows from a table
Syntax: DELETE FROM tablename
Example: DELETE FROM Sailors

hid | bname color

101 | Imterlake | blue

1022 | Interlake | red

- il L F N |
103 | Chpper OTEeT

104 | Marne red

Fig 4.2 Boats table

15

sid | bid | day

22 | 101 | 10/10/9%
22 | 102 | 10/10/98
22 | 103 | 10/8/98
22 | 104 | 10/7 /98
31 | 102 | 11/10/98
31 | 103 | 11/6/98
31 | 104 | 11/12/98
64 | 101 | 9/5/08
G4 | 102 | 9/8/08
74 | 103 | 9/8/08

Fig 4.3 Reserves table

16

DCL Commands
-GRANT
-REVOKE

GRANT Command

"]t 1s used to provide access rights or privileges on the
database objects to the users.

Syntax:
GRANT privilege name
ON object name
TO {user name |PUBLIC}
[WITH GRANT OPTION];

=privilege_name is the access right or privilege granted
to the user. Some of the access rights are ALL,

EXECUTE, and SELECT

"object name is database object name like TABLE,
VIEW, STORED PROCEDURE

=user_name is the name of the user to whom an access
right 1s being granted

--PUBLIC 1s used to grant access rights to all users

*WITH GRANT OPTION - allows a user to grant
access rights to other users

sExample:

GRANT SELECT ON employee TO userl;

SQL REVOKE Command:

*"The REVOKE command removes user access rights
or privileges to the database objects

Syntax:

REVOKE privilege name
ON object name
FROM {user name |PUBLIC}

Eample:
REVOKE SELECT ON employee FROM userl;

"REVOKE a SELECT privilege on employee table from
userl

=suser]l will not be able to SELECT data from that table

AND, OR and NOT Operators

Question: Find the names of sailors who have reserved boat number
103

Query: SELECT sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bi1d=103

Output:

SNAME
Dustin
Lubber

Horatio

BETWEEN

"Used to define range limits

Question: Find all sailors whose age is in between 45.0 and 63.5

Query: SELECT *
FROM Sailors
WHERE age BETWEEN 45.0 AND 63.5

Output: gD SNAME RATING AGE
22 Dustin 7 45
31 Lubber 8 55.5
95 Bob 3 63.5

IN

sUsed to check whether an attribute value matches a value
contained within a set of listed values

Question: Find all sailors whose age is in the list of
values(15.0,33.2,45.7,63.5)

Query: SELECT *
FROM Sailors

WHERE age IN (15.0,33.2,45.7,63.5)
Output:

SID SNAME RATING AGE
95 Bob 3 63.5

STRING operators

=“9%” character 1s used to match any substring

.66 29

character 1s used to match any character

"Expresses patterns by using the ‘like’ comparison operator

Examplel

SELECT *
FROM Sailors
WHERE sname LIKE " u%'

Output:
w2 NAME RALING ACE
.22 Dustn 7 45
.31 Lubber 8 555
W

Example2

SELECT *
FROM Sailors
WHERE sname LIKE'A d '

Output:

man e L N
232 Andy 8 255

25

SET operators

*Operations such as union, intersect, minus and exists
operate on relations

»Corresponding to relational-algebra operations U, N and —

"Relations participating 1n the operations must be
compatible; 1.e., must have same set of attributes

<query 1> <set operator> <query 2>

=union returns a table consisting of all rows either appearing
in the result of <queryl> or 1n the result of <query 2>

26

Example (union)

SELECT *
FROM Sailors
UNION
SELECT *
FROM Sailors1

Output:
. sid E sname | rating | | age |
1 22 | Dustin | 7 45.0
20 | Brutus | 1 33.0
31 Lubber E_E SHRS
[_"ﬁfi_ Andy 73— b
t 58 | Rusty | 10 35.0
64 | Horatio | 7 35.0
71l | dorba 10 L 16.0
74 | Horatio | 9 :l 35.0
85 | Art 3 | 25.5
95 | Bob |3 63.5

Example (intersect)

SELECT *
FROM Sailors
INTERSECT
SELECT *
FROM Sailors1

Output:

22 ' Dustin
29 | Brutus
31 | Lubber
rﬁf& | End—{:
58 | Rusty
64 | Horatio
T1 Sorba
74 | Horatio
25 | Art
95 | Bob

Example (minus)

SELECT *

FROM Sailors

MINUS

SELECT *

FROM Sailorsl

Output: no rows selected

Nested Queries

" A nested query 1s a query that has another query embedded
within 1t

*"The embedded query 1s called a subquery

" A subquery typically appears within the WHERE clause
of a query

"Subqueries can sometimes appear in the FROM clause or
the HAVING clause

*"In the nested queries, the inner subquery is completely
independent of the outer query

Introduction to Nested Queries

Question: Find the names of sailors who have reserved boat
103

Query:

SELECT S.sname

FROM Sailors S
WHERE S.sid IN
(SELECT R.sid FROM Reserves R WHERE R.b1d=103)

Output:
SNAME

Dustin
Lubber
Horatio

Question: FInd the names of sailors who have reserved a
blue boat

Query:

SELECT S.sname

FROM Sailors S

WHERE S.sid IN
(SELECT R.sid FROM Reserves R WHERE R.bid IN
(SELECT B.bid FROM Boats B WHERE B.color="blue'))

Output: SNAME

Dustin
Horatio

Correlated Nested Queries

"In Correlated Nested Queries, inner subquery could depend
on the row that 1s currently being examined in the outer

query

Question: Find the names of sailors who have reserved boat
103

Query:

SELECT S.sname

FROM Sailors S

WHERE EXISTS

(SELECT * FROM Reserves R WHERE R.bid = 103 AND
R.sid = S.sid)

Output: SNAME
Dustin

Lubber
Horatio

*The EXISTS operator 1s another set comparison operator,
such as IN

=]t allows us to test whether a set is nonempty. Thus, for
each Sailor row S, we test whether the set of Reserves rows
R such that R.bid = 103 AND S.sid = R.sid is nonempty. If
so, sallor S has reserved boat 103, and we retrieve the
name

*"The subquery clearly depends on the current row S and
must be re-evaluated for each row In Sailors

*The occurrence of S In the subquery (in the form of the
literal S.sid) iIs called a correlation, and such queries are
called correlated queries

COMPARISION OPERATORS

*"These operators can be used i ‘WHERE’ clause and
‘HAVING’ clause

35

Example

Question: Find sailors whose rating Is better than some
sallor called Horatio

Query:

SELECT S1.sname, S1.rating

FROM Sailors S1

WHERE Sl.rating > ANY (SELECT S2.rating FROM

Sailors S2 WHERE S2.sname='Horati0')

Output: SNAME RATING
Rusty 10
Zorba 10
Horatio 9
Lubber 8

Andy 3

Question: Find sailors whose rating is better than some sailor
called Horatio

Query:

SELECT S1.sname, S1.rating

FROM Sailors S1

WHERE Sl.rating > ALL (SELECT S2.rating FROM

Sailors S2 WHERE S2.sname="Horatio')
Output:

SNAME RATING
Rusty 10
Zorba 10

AGGREGATE OPERATORS
*"[n addition to simply retrieving data, we often want to
perform some computation or summarization

sSQL supports the following aggregate operators which can
be applied on any column, say A, of a relation(table):

1. COUNT ([DISTINCT] A): The number of (unique)
values 1n the A column

2. SUM ([DISTINCT] A): The sum of all (unique) values
in the A column

3. AVG ([DISTINCT] A): The average of all (unique)
values 1n the A column

4. MAX (A): The maximum value in the A column

5. MIN (A): The minimum value 1n the A column

Note: not specify DISTINCT 1n conjunction with MIN or
MAX

Examples:

Question: FInd the average age of all sailors
Query:

SELECT AVG (age)

FROM Sailors

Output:
AVG(AGE)

36.9

Question: Find the name and age of the oldest sailor
Query:

SELECT S1.sname, S1.age

FROM Sailors S1

WHERE S1.age = (SELECT MAX (S2.age) FROM Sailors

S2)
Output:
SNAME AGE
Bob 63.5
Question: Count the number of sailors
Query:
SELECT COUNT (*)
FROM Sailors
Output: COUNT(*)

10

The GROUP BY and HAVING Clauses
*We have applied aggregate operators to all (qualifying)
rows 1n a relation(table)

*GROUP BY used to apply aggregate operators to each of a
number of groups of rows in a relation

"HAVING 1s used to place a condition, which is applied on

the groups of rows
general form:

SELECT [DISTINCT] fieldname
FROM table names

WHERE condition

GROUP BY fieldname

HAVING group-condition

Examples
Question: Find the number of sailors belongs to each rating
level

Query:

SELECT rating, COUNT (rating)

FROM Sailors

GROUP BY rating
Output:

Question: Find the age of the youngest sailor for each rating
level

Query:

SELECT rating, MIN (age)

FROM Sailors

GROUP BY rating
Output:

- RATING - MINIAGE)

43

Question: Find the age of the youngest sailor for each rating
level, which is greater than 7

Query:
SELECT rating, MIN(age)
FROM Sailors
GROUP BY rating
HAVING rating>7
Output:
RATING MIN(AGE)
8 25.5
9 35

10 16

ORDER BY

*The order by clause 1s used to sort the tuples in a query
result based on the values of some attributes

Example

Question: display the sailors table in the ascending order of
sname

Query:
SELECT *
FROM Sailors

ORDER BY sname

Output

Question: display the sailors table in the descending order of
sname

Query:
SELECT *
FROM Sailors

ORDER BY sname DESC

Output

NULL VALUES

= Thus far, we have assumed that column values 1n a row are
always known. In practice column values can be unknown

=We use null when the column value is either unknown

Example

"[nsert the row (98,Dan,null,39) to represent Dan into
sailors table

Query: INSERT INTO Sailors VALUES(98,'Dan',null,39)
Query: SELECT *
FROM Sailors

Output

Comparisons Using Null Values

»Consider a comparison such as rating = 8

=|f this Is applied to the row for Dan, Is this condition true
or false? Since Dan's rating i1s unknown, it 1s evaluated to
the value unknown

*This is the case for the comparisons rating > 8 and rating
< 8 as well

*SQL also provides a special comparison operator IS NULL
to test whether a column value is null

=for example, we can say rating IS NULL, which would
evaluate to true on the row representing Dan

"We can also say rating IS NOT NULL, which would
evaluate to false on the row for Dan

Example

Query:
SELECT *
FROM sailors

WHERE rating IS NULL
Output:

SID SNAME RATING AGE
08 Dan 39

Logical Connectives AND, OR, and NOT
swhat about Boolean expressions such as

rating = 8 OR age < 40
rating = 8 AND age < 407?

=Considering the row for Dan again, because age < 40, the
first expression evaluates to true regardless of the value of
rating, but what about the second? We can only say
unknown

*The expression NOT unknown 1s defined to be unknown

"OR of two arguments evaluates to true if either argument
evaluates to true, and to unknown if one argument
evaluates to false and the other evaluates to unknown

"AND of two arguments evaluates to false if either
argument evaluates to false, and to unknown if one
argument evaluates to unknown and the other evaluates to
true or unknown

Impact on SQL Constructs

*In the presence of null values, any row that evaluates to
false or to unknown is eliminated

*Eliminating rows that evaluate to unknown has a subtle

but significant mmpact on queries, especially nested
queries involving EXISTS or UNIQUE

"[f we compare two null values using =, the result Is
unknown! In the context of duplicates, this comparison 1s
implicitly treated as true, which 1s an anomaly

The arithmetic operations +, - ,, / and = all return null
if one of their arguments is null

Example

Query:

SELECT sid, rating, sid+rating
FROM Sailors

Output

"nulls can cause some unexpected behavior with
aggregate operators

COUNT() handles null values just like other values,
that 1s, they get counted

Example

Query:

SELECT COUNT(*)
FROM Sailors

Output:
COUNT(*)

11

= All the other aggregate operators (COUNT, SUM, AVG,
MIN, MAX, and variations using DISTINCT) simply
discard null values

Outer Joins

=join operation that rely on null values, called outer joins
=Consider the join of two tables, say Sailors B, Reserves

*In a full outer join, ‘matching rows’ plus ‘Sailors rows
without a matching Reserves rows’ (columns inherited
from Reserves assigned null values) plus ‘Reserves rows
without a matching Sailors rows’ (columns inherited from
Sailors assigned null values) appear in the result

*I[n a left outer join, ‘matching rows’ plus ‘Sailors rows
without a matching Reserves rows’ (columns inherited
from Reserves assigned null values) appear in the result

*In a right outer join, ‘matching rows’ plus ‘Reserves rows
without a matching Sailors rows’ (columns inherited from
Sailors assigned null values) appear in the result

=Note: In Inner join only matching rows appear in the result

Example

Query:

SELECT S.s1d,S.sname,R.bid,R.day

FROM Sailors S LEFT OUTER JOIN Reserves R ON

S.sid=R.sid

=

Output

60

Disallowing Null Values

*We can disallow null values by specifying NOT NULL as
part of the field definition, for example,

sname VARCHAR2(20) NOT NULL

»The ficlds in a primary key are not allowed to take on null
values

*There 1s an implicit NOT NULL constraint for every field
listed in a PRIMARY KEY constraint

