
Transaction Concept

Definition: A transaction is a operation or a collection of
operations that accesses and possibly updates various dataoperations that accesses and possibly updates various data
items
Ex: Funds transfer in which one account (say A) is debited(y)

and another account (say B) is credited

The database system has to maintain the following
properties (ACID) for the transactions:

Atomicity: Either all operations of the transaction are
reflected properly in the database, or nonereflected properly in the database, or none
--Debiting & Crediting in funds transfer

1

Consistency: Execution of the transaction must preserve
the consistency of the databasey

--Sum of A + B must be preserved after execution of
funds transfer

Isolation: Each transaction is unaware of other transactions
ti tl i th texecuting concurrently in the system

--When T1 and T2 executing concurrently, T1 is unaware
of T2 is executing and T2 is unaware of T1 is executingof T2 is executing and T2 is unaware of T1 is executing

Durability: After transaction completes successfully, the
changes it has made to the database persist, even if there are
system failures

N l f A d B i i f d--New values of accounts A and B must persist in funds
transfer 2

Programmer is responsible for ensuring consistency

Transaction management component is responsible for
ensuring atomicityensuring atomicity

Recovery-management component is responsible fory g p p
ensuring durability

Concurrency control component is responsible for
ensuring isolation

3

Let Ti be a transaction that transfers $50 from account A to
account B

Writing of transactionWriting of transaction

Ti : read(A);i ();
A := A − 50;
write(A);
read(B);

B := B + 50;
rite(B)write(B)

4

Transaction State

While executing transaction, it goes to different states

A transaction that completes its execution successfully is
called committed

If a transaction does not complete its execution
s ccessf ll that transaction is called failedsuccessfully that transaction is called failed

Failed transaction has to roll backFailed transaction has to roll back

Roll back means undo the changes made by the transaction

5

Once a transaction has committed, we cannot undo changes

A transaction must be in one of the following states:

Active, the initial state; the transaction stays in this state
while it is executingwhile it is executing

Partially committed, after the final statement has beeny
executed

i h h i f il f iFailed, when there is failure of transaction

6

Aborted, after the transaction has been rolled back and the
database has been restored to its state prior to the start of thep
transaction

Committed, after successful completion of transaction

7

A transaction starts in the active state

When it finishes its final statement, it enters the partially
committed state

At this point, the transaction has completed its execution,
but it is still possible that it may have to be aborted, sincebut it is still possible that it may have to be aborted, since
the actual output may still be temporarily residing in main
memory, and thus a hardware failure may prevent its
successful completion

Aft iti i f ti t th di k th t ti tAfter writing information to the disk, the transaction enters
the committed state

A transaction enters the failed state when there is a failure
8

Failed transaction must be rolled back. Then, it enters the
aborted state

At this point, the system has two options:
1.It can restart the transaction
2. It can kill the transaction

Implementation of Atomicity and Durability

The transaction-management component and recovery-
management component of a database system can support
atomicity and durability by a variety of schemes

h d h I i b d ki i f hshadow copy scheme: It is based on making copies of the
database, called shadow copies 9

The scheme assumes that the database is simply a file on
disk

A pointer called db-pointer is maintained on disk; it points
to the current copy of the database

10

In this scheme, a transaction that wants to update the
database first creates a complete copy of the databasedatabase first creates a complete copy of the database

All updates are done on the new database copy, leaving theAll updates are done on the new database copy, leaving the
original copy, the shadow copy, untouched

If at any point the transaction has to be aborted, the system
merely deletes the new copy. The old copy of the database
h t b ff t dhas not been affected

If the transaction completes it is committed as follows:If the transaction completes, it is committed as follows:

First, the operating system is asked to make sure that allp g y
pages of the new copy of the database have been written out
to disk 11

After the operating system has written all the pages to disk,
the database system updates the db-pointer to point to thethe database system updates the db-pointer to point to the
new copy of the database

The new copy then becomes the current copy of the
database

The old copy of the database is then deleted

Figure 15.2 depicts the scheme

The transaction is said to have been committed at the point
where the updated db-pointer is written to disk

12

Now consider how the technique handles transaction and
system failures:y

Transaction failure: If the transaction fails at any time before
db-pointer is updated, the old contents of the database are
not affected

We can abort the transaction by just deleting the new copy
of the databaseof the database

Once the transaction has been committed, all the updates
that it performed are in the database pointed to by db-pointer

S f il S h h f il iSystem failure: Suppose that the system fails at any time
before the updated db-pointer is written to disk 13

When the system restarts, it will read db-pointer and will
thus see the original contents of the database and none ofthus see the original contents of the database, and none of
the effects of the transaction will be visible on the database

Next, suppose that the system fails after db-pointer has
been updated on disk

Before the pointer is updated, all updated pages of the new
f th d t b itt t di kcopy of the database were written to disk

We assume that once a file is written to disk its contentsWe assume that, once a file is written to disk, its contents
will not be damaged even if there is a system failure

14

Concurrent Executions

Transaction-processing systems usually allow multiple
transactions to run concurrently

Allowing multiple transactions to update data concurrently
ca ses se eral complications ith consistenc of the datacauses several complications with consistency of the data

There are two good reasons for allowing concurrency:There are two good reasons for allowing concurrency:

1. Improved throughput and resource utilization:

A transaction consists of many steps. Some involve I/O
ti it th i l CPU ti itactivity; others involve CPU activity

15

The CPU and the disks in a computer system can operate in
parallel Therefore I/O activity can be done in parallel withparallel. Therefore, I/O activity can be done in parallel with
processing at the CPU

All of this increases the throughput of the system-that is,
the number of transactions executed in a given amount of
itime

Correspondingly the processor and disk utilization alsoCorrespondingly, the processor and disk utilization also
increase

2. Reduced waiting time:

There may be a mix of transactions running on a system,
some short and some long 16

If transactions run serially, a short transaction may have to
ait for a preceding long transaction to completewait for a preceding long transaction to complete

Which can lead to unpredictable delays in running aWhich can lead to unpredictable delays in running a
transaction

If the transactions are operating on different parts of the
database, it is better to let them run concurrently, sharing
h CPU l d di k hthe CPU cycles and disk accesses among them

It also reduces the average response time: the average timeIt also reduces the average response time: the average time
for a transaction to be completed after it has been submitted

17

The database system must control the interaction among
the concurrent transactions to prevent them fromthe concurrent transactions to prevent them from
destroying the consistency of the database

Example
Transaction T1 transfers $50 from account A to account

B. It is defined as

T1 d(A)T1: read(A);
A := A − 50;
write(A);write(A);
read(B);
B := B + 50;

18

write(B)

Transaction T2 transfers 10 percent of the balance from
A B I i d fi daccount A to account B. It is defined as

T2: read(A);T2: read(A);
temp := A * 0.1;
A := A − temp;p;
write(A);
read(B); B := B + temp; write(B)

Suppose the current values of accounts A and B are $1000
and $2000 respectivelyand $2000, respectively

19

20

The execution sequences just described are called
schedules These sched les are serialschedules. These schedules are serial

21

Suppose that the two transactions are executed
concurrently. One possible schedule appears in Figure 15.5.y p pp g

22

In Schedules 1, 2 and 3, the sum A + B is preserved
The following concurrent schedule does not preserve theThe following concurrent schedule does not preserve the
value of (A + B)

23

Serializability

Basic Assumption – Each transaction preserves database
consistency

Thus serial execution of a set of transactions preserves
d t b i tdatabase consistency

A (possibly concurrent) schedule is serializable if it isA (possibly concurrent) schedule is serializable if it is
equivalent to a serial schedule

Different forms of schedule equivalence give rise to the
notions of:

1 fli t i li bilit1. conflict serializability
2. view serializability 24

We ignore operations other than read and write
instructions

Our simplified schedules consist of only read and write
instructions

Conflicting Instr ctionsConflicting Instructions

Instructions li and lj of transactions Ti and Tj respectivelyInstructions li and lj of transactions Ti and Tj respectively,
conflict if and only if there exists some item Q accessed by
both li and lj, and at least one of these instructions write Qi j

1. li = read(Q), lj = read(Q). li and lj don’t conflict
2. li = read(Q), lj = write(Q). They conflict
3 l it (Q) l d(Q) Th fli3. li = write(Q), lj = read(Q). They conflict
4. li = write(Q), lj = write(Q). They conflict 25

Intuitively, a conflict between li and lj forces a (logical)
temporal order between themp

If li and lj are consecutive in a schedule and they do notj
conflict, their results would remain the same even if they
had been interchanged in the schedule

Conflict Serializability

If a schedule S can be transformed into a schedule S' by a
series of swaps of non-conflicting instructions, we say that
S and S' are conflict equivalent

W h h d l S i fli t i li bl if i iWe say that a schedule S is conflict serializable if it is
conflict equivalent to a serial schedule 26

Schedule 3 can be transformed into Schedule 5, by series
of swaps of non-conflicting instructionsp g

Therefore Schedule 3 is conflict serializable

Schedule 3
27

T1 T2
read(A)

it (A)

T1 T2
read(A)

it (A)write(A)
read(A)

read(B)
write(A)

write(A)
read(B)

read(A)
write(A)write(A)

write(B)
read(B)
write(B)

write(A)
write(B)

read(B)
write(B)write(B) write(B)

T1 T2
read(A)
write(A)
read(B)
write(B)

T1 T2
read(A)
write(A)

d()read(A)
write(A)
read(B)

read(B)
read(A)

write(B)
it (A)

28

write(B) write(A)
read(B)
write(B)Fig 15.8 Schedule 5

Example of a schedule that is not conflict serializable:

We are unable to swap instructions in the above schedule
t bt i ith th i l h d l < T T > th i lto obtain either the serial schedule < T3, T4 >, or the serial
schedule < T4, T3 >

Note: Serializability is used to check whether concurrent
schedule ensures database consistency or noty

29

View Serializabilityy

Let S and S' be two schedules with the same set of
transactions. S and S' are view equivalent if the following
three conditions are met:

1.For each data item Q, if transaction Ti reads the initial
value of Q in schedule S then transaction Ti must invalue of Q in schedule S, then transaction Ti must, in
schedule S', also read the initial value of Q

30

2.For each data item Q if transaction Ti executes read(Q) in
schedule S, and that value was produced by transaction Tj, p y j
(if any), then transaction Ti must in schedule S' also read the
value of Q that was produced by transaction Tjj

3.For each data item Q, the transaction (if any) that
f th fi l rite(Q) ti i h d l S tperforms the final write(Q) operation in schedule S must

perform the final write(Q) operation in schedule S'

As can be seen, view equivalence is also based purely on
reads and writes alone

A schedule S is view serializable it is view equivalent to a
i l h d lserial schedule

31

Every conflict serializable schedule is also view
serializableserializable

In our previous examples, schedule 1 (Fig 15.3) is notp p (g)
view equivalent to schedule 2 (Fig 15.4) , since, in schedule
1, the value of account A read by transaction T2 was

d d b h hi d h ld i h d lproduced by T1, whereas this case does not hold in schedule
2

However, schedule 1 is view equivalent to schedule 3 (Fig
15.5))

32

Recoverability

We now address the effect of transaction failures during
concurrent execution

If a transaction Ti fails, for whatever reason, we need to
d th ff t f thi t ti t th t i itundo the effect of this transaction to ensure the atomicity

property of the transaction

In a concurrent execution, any transaction Tj that is
dependent on Ti (that is, Tj has read data written by Ti) isi j i
also aborted
There are two types of schedules:

1 R bl S h d l1.Recoverable Schedules
2.Cascadeless Schedules 33

Recoverable Schedules

Consider schedule 11 in Figure 15.13

Suppose that the system allows T9 to commit immediately
after executing the read(A) instruction

Thus, T9 commits before T8 does 34

Now suppose that T8 fails before it commits

Since T9 has read the value of data item A written by T8, we
must abort T9 to ensure transaction atomicity

However, T9 has already committed and cannot be aborted

Thus, we have a situation where it is impossible to recover
correctly from the failure of T8correctly from the failure of T8

Schedule 11, with the commit happening immediately after
th d(A) i t ti i l f blthe read(A) instruction, is an example of a non recoverable
schedule

Database system require that all schedules be recoverable
35

A recoverable schedule is one where, for each pair of
transactions Ti and Tj such that Tj reads a data itemi j j
previously written by Ti, the commit operation of Ti appears
before the commit operation of Tjj

Cascading rollback
A i l t ti f il l d t i f t tiA single transaction failure leads to a series of transaction

rollbacks is called cascading rollback

Consider the following schedule where none of the
transactions has yet committed (so the schedule is
recoverable)

If T f il T d T l b ll d b kIf T10 fails, T11 and T12 must also be rolled back
36

Cascadeless schedules

A cascadeless schedule is one where, for each pair of
transactions Ti and Tj such that Tj reads a data item
previously written by Ti, the commit operation of Ti
appears before the read operation of Tj

Every cascadeless schedule is also recoverable

It is desirable to restrict the schedules to those where
cascading rollbacks cannot occur 37

Implementation of Isolation

A transaction acquires a lock on the entire database
before it starts and releases the lock after it hasbefore it starts and releases the lock after it has
committed

While a transaction holds a lock, no other transaction is
allowed to acquire the lock, and all must therefore wait
f th l k t b l dfor the lock to be released

As a result of the locking policy only one transactionAs a result of the locking policy, only one transaction
can execute at a time

38

Therefore, only serial schedules are generated

Testing for Serializability

When designing concurrency control schemes, we must
show that schedules generated by the scheme are serializableshow that schedules generated by the scheme are serializable

We can determine whether a schedule is serializable or not
using precedence graph

Precedence graph

A direct graph where the vertices are the transactionsA direct graph where the vertices are the transactions
(names)

We draw an arc from Ti to Tj if the two transactions conflict
39

The precedence graph for schedule 4 appears in Figure
15.1615.16
It contains the edge T1→T2, because T1 executes

read(A) before T2 executes write(A). It also contains the
edge T2 → T1, because T2 executes read(B) before T1
executes write(B)

40

If the precedence graph contain cycles, then schedule
S is not conflict serializable

If the precedence graph contains no cycles, then the
schedule S is conflict serializableschedule S is conflict serializable

Schedules in Fig 15.15 are conflict serializableSchedules in Fig 15.15 are conflict serializable

Schedule in Fig 15.16 is not conflict serializable

A serializability order of the transactions can be
bt i d th h t l i l tiobtained through topological sorting

For example the graph of Figure 15 17a has the two

41

For example, the graph of Figure 15.17a has the two
acceptable linear orderings shown in Figures 15.17b and
15.17c

42

Concurrency-control schemes
There are different schemes for controlling the execution of

concurrent transactions

L k B d P t lLock-Based Protocols

A lock is a mechanism to control concurrent access to aA lock is a mechanism to control concurrent access to a
data item

In this method data items are accessed in a mutually
exclusive manner; that is, while one transaction is accessing
a data item, no other transaction can modify that data item

Data items can be locked in two modes :Data items can be locked in two modes :
1. exclusive (X): Data item can be both read as well as

43

written. X-lock is requested using lock-X instruction

2. shared (S): Data item can only be read. S-lock is
requested using lock-S instructionq g

Lock requests are made to concurrency-control manager

Transaction can proceed only after request is granted

Lock-compatibility matrix

44

A transaction may be granted a lock on an data item if the
requested lock is compatible with locks already held on therequested lock is compatible with locks already held on the
data item by other transactions

Any number of transactions can hold shared locks on an
item, but if any transaction holds an exclusive on the item
no other transaction may hold any lock on the item

If l k t b t d th ti t ti iIf a lock cannot be granted, the requesting transaction is
made to wait till all incompatible locks held by other
transactions have been released The lock is then grantedtransactions have been released. The lock is then granted

45

Example of a transaction performing locking:

T2: lock-S(A);
read (A);read (A);
unlock(A);
lock-S(B);
read (B);
unlock(B);
di l (A+B)display(A+B)

A locking protocol is a set of rules followed by allA locking protocol is a set of rules followed by all
transactions while requesting and releasing locks

46

Pitfalls of Lock-Based Protocols
Consider the partial schedulep

Neither T3 nor T4 can make progress - executing lock-S(B)Ne e 3 o 4 c e p og ess e ecu g oc S()
causes T4 to wait for T3 to release its lock on B, while
executing lock-X(A) causes T3 to wait for T4 to release its
l k Alock on A

Such a situation is called a deadlock. To handle a deadlock
one of T3 or T4 must be rolled back
and its locks released 47

The Two-Phase Locking Protocol

Phase 1: Growing Phase
•transaction may obtain locks
•transaction may not release locks

Ph 2 Sh i ki PhPhase 2: Shrinking Phase
•transaction may release locks
•transaction may not obtain lockstransaction may not obtain locks

Initially, a transaction is in the growing phase. The
transaction acquires locks as needed

48

Once the transaction releases a lock, it enters the
shrinking phase and it can issue no more lock requestsshrinking phase, and it can issue no more lock requests

The protocol assures serializabilityThe protocol assures serializability

It can be proved that the transactions can be serialized
in the order of their lock points (i.e. the point where a
transaction acquired its final lock)

49

Implementation of Locking

A lock manager can be implemented as a separate process
to which transactions send lock and unlock requests

The lock manager replies to a lock request by sending a
l k t (ki th t ti tlock grant messages (or a message asking the transaction to
roll back, in case of a deadlock)

The requesting transaction waits until its request is
answered

The lock manager maintains a data-structure called a lock
t bl d d l k d ditable to record granted locks and pending requests

50

The lock table is usually implemented as an in-memory
hash table indexed on the name of the data item beingg
locked

Lock Table

51

Black rectangles indicate granted locks, white ones indicate
waiting requestsg q

Lock table also records the type of lock granted or
requested

Timestamp Based ProtocolsTimestamp-Based Protocols

Each transaction is issued a timestamp when it enters theEach transaction is issued a timestamp when it enters the
system. If an old transaction Ti has time-stamp TS(Ti), a new
transaction Tj is assigned time-stamp TS(Tj) such that TS(Ti)transaction Tj is assigned time stamp TS(Tj) such that TS(Ti)
<TS(Tj)

Time-stamps determine the serializability order
52

In order to assure such behavior, the protocol maintains
for each data Q two timestamp values:for each data Q two timestamp values:

W-timestamp(Q) is the largest time-stamp of anyW timestamp(Q) is the largest time stamp of any
transaction that executed write(Q) successfully

R-timestamp(Q) is the largest time-stamp of any
transaction that executed read(Q) successfully

Any conflicting read and write operations are executed
in timestamp order

53

Validation-Based Protocol

Execution of transaction Ti is done in three phases.

1. Read and execution phase: Transaction Ti writes only
to temporary local variables

2. Validation phase: Transaction Ti performs a "validation
test" to determine if local variables can be written withouttest to determine if local variables can be written without
violating serializability

3. Write phase: If Ti is validated, the updates are applied
to the database; otherwise, Ti is rolled back

54

Each transaction Ti has 3 timestamps

Start(Ti) : the time when Ti started its execution

Validation(Ti): the time when Ti entered its validation
phase

Finish(Ti) : the time when Ti finished its write phase

55

Recovery and Atomicity

Modif ing the database itho t ens ring that theModifying the database without ensuring that the
transaction will commit may leave the database in an
inconsistent stateinconsistent state

Consider transaction T that transfers $50 fromConsider transaction Ti that transfers $50 from
account A to account B; goal is either to perform all
database modifications made by Ti or none at ally i

Several output operations may be required for Ti (toSeve a output ope at o s ay be equ ed o i (to
output A and B). A failure may occur after one of these
modifications have been made but before all of them

56

are made

To ensure atomicity despite failures, we first output
information describing the modifications to stableinformation describing the modifications to stable
storage without modifying the database itself

We study two approaches:

• log-based recovery, and
• shadow paging• shadow-paging

We assume (initially) that transactions run serially thatWe assume (initially) that transactions run serially, that
is, one after the other
Stable storage: storage that survives all failures

57

Stable storage: storage that survives all failures

Log-Based Recovery

A log is kept on stable storageA log is kept on stable storage
• The log is a sequence of log records, and maintains

a record of update activities on the databasea record of update activities on the database
When transaction Ti starts, it registers itself by writing
a <Ti start> log record
Before Ti executes write(X), a log record <Ti, X, V1,
V2> is written, where V1 is the value of X before the
write and V is the value to be written to Xwrite, and V2 is the value to be written to X
< Ti commit> Transaction Ti has committed
< T abort> Transaction T has aborted< Ti abort> Transaction Ti has aborted
Two approaches using logs
• Deferred database modification

58

Deferred database modification
• Immediate database modification

Deferred Database Modification

This scheme records all modifications to the log, but
defers all the writes to after partial commitp
Assume that transactions execute serially
Transaction starts by writing <Ti start> record to logTransaction starts by writing Ti start record to log
A write(X) operation results in a log record <Ti, X, V>
being written, where V is the new value for Xg ,

Note: old value is not needed for this scheme
The write is not performed on X at this time, but isThe write is not performed on X at this time, but is
deferred

59

When Ti partially commits, <Ti commit> is written toW e i p y co s, i co s w e o
the log
Finally, the log records are used to actually execute the

previously deferred writes
During recovery after a crash, a transaction needs to be
d if d l if b th <T t t> d <T it>redone if and only if both <Ti start> and <Ti commit>

are there in the log
Redoing a transaction Ti (redo Ti) sets the value of allRedoing a transaction Ti (redo Ti) sets the value of all

data items updated by the transaction to the new values
Crashes can occur while the transaction is executing

the original updates, or while recovery action is being
taken

60

example transactions T0 and T1 (T0 executes before
T):T1):

T d (A) T d (C)T0: read (A); T1 : read (C);
A: = A – 50; C:=C – 100;
Write (A); write (C);
read (B);
B:= B + 50;
write (B);

Below we show the log as it appears at three

61

instances of time

If log on stable storage at time of crash is as in case:
() N d ti d t b t k(a) No redo actions need to be taken
(b) redo(T0) must be performed since <T0 commit> is
presentp
(c) redo(T0) must be performed followed by redo(T1)
since <T0 commit> and <T1 commit> are present

62

Immediate Database Modification

This scheme allows database updates of an uncommitted
transaction to be made as the writes are issued

i d i b d d d t l t h• since undoing may be needed, update logs must have
both old value and new value

U d t l d t b itt b f d t b itUpdate log record must be written before database item
is written

Output of updated blocks can take place at any time
before or after transaction commit

Order in which blocks are output can be different from
h d i hi h h i

63

the order in which they are written

Immediate Database Modification Example

64

Recovery procedure has two operations instead of one:
• undo(T) restores the value of all data items updated• undo(Ti) restores the value of all data items updated

by Ti to their old values, going backwards from the
last log record for Tig i

• redo(Ti) sets the value of all data items updated by Ti
to the new values, going forward from the first log

d f Trecord for Ti
Both operations must be idempotent
• That is even if the operation is executed multiple• That is, even if the operation is executed multiple

times the effect is the same as if it is executed once
• Needed since operations may get re-executedNeeded since operations may get re executed

during recovery

65

When recovering after failure:
Transaction Ti needs to be undone if the log containsi g
the record<Ti start>, but does not contain the record
<Ti commit>
Transaction T needs to be redone if the log containsTransaction Ti needs to be redone if the log contains
both the record <Ti start> and the record <Ti commit>

Undo operations are performed first, then redo operations

Below we show the log as it appears at three instances of

Immediate DB Modification Recovery Example

time

66

Recovery actions in each case above are:
(a) undo (T0): B is restored to 2000 and A to 1000
(b) undo (T1) and redo (T0): C is restored to 700, and

then A and B are
set to 950 and 2050 respectively

(c) redo (T0) and redo (T1): A and B are set to 950 and
2050

67

2050
respectively. Then C is set to 600

Checkpoints

Problems in recovery procedure as discussed earlier :
1. searching the entire log is time-consuming
2. we might unnecessarily redo transactions which have

already
Streamline recovery procedure by periodically
performing checkpointing
1. Output all log records currently residing in main

memory onto stable storage
2 W i h di k2. Write outputs to the disk
3. Write a log record <checkpoint> onto stable storage

68

During recovery we need to consider only the most
recent transaction Ti that started before the checkpointrecent transaction Ti that started before the checkpoint,
and transactions that started after Ti

1. Scan backwards from end of log to find the most1. Scan backwards from end of log to find the most
recent <checkpoint> record

2. Continue scanning backwards till a record <Tig i
start> is found

3. Consider the part of log following above startp g g
record. Earlier part of log can be ignored during
recovery, and can be erased whenever desired

4. For all transactions (starting from Ti or later) with
no <Ti commit>, execute undo(Ti). (Done only in

f i di t difi ti)
69

case of immediate modification)

5. Scanning forward in the log, for all transactions
starting from Ti or later with a <Ti commit>,

Example of Checkpoints
T T

g i i ,
execute redo(Ti)

Tc Tf

T1

T22

T3

T4

checkpoint system failure

• T1 can be ignored (updates already output to disk due
to checkpoint)
T d T d

70

• T2 and T3 redone
• T4 undone

Shadow Paging
database is partitioned into some number of fixed-length blocks,
which are referred to as pageswhich are referred to as pages
The page table has n entries—one for each database page. Each
entry contains a pointer to a page on disk
Shadow paging is an alternative to log-based recovery; this
scheme is useful if transactions execute serially
Id i t i t t bl d i th lif ti f t tiIdea: maintain two page tables during the lifetime of a transaction
–the current page table, and the shadow page table
Store the shadow page table in nonvolatile storage, such that statep g g ,
of the database prior to transaction execution may be recovered
• Shadow page table is never modified during execution

To start with, both the page tables are identical. Only current page
table is used for data item accesses during execution of the
transaction

71

t a sact o
Whenever any page is about to be written for the first time
• A copy of this page is made onto an unused page

• The current page table is then made to point to the copy
• The update is performed on the copy

Sample Page Table
p p py

72

Example of Shadow Paging
Shadow and current page tables after write to page 4Shadow and current page tables after write to page 4

73

To commit a transaction :
1 Flush all modified pages in main memory to disk1. Flush all modified pages in main memory to disk
2. Output current page table to disk
3. Make the current page table the new shadow page table,3. Make the current page table the new shadow page table,
as follows:
• keep a pointer to the shadow page table at a fixed (known)

l ti di klocation on disk
• to make the current page table the new shadow page table,

simply update the pointer to point to current page table on disk
Once pointer to shadow page table has been written,
transaction is committed
N i d d ft h t tiNo recovery is needed after a crash — new transactions
can start right away, using the shadow page table
Pages not pointed to from current/shadow page table

74

Pages not pointed to from current/shadow page table
should be freed (garbage collected)

Recovery With Concurrent Transactions

We modify the log-based recovery schemes to allow
multiple transactions to execute concurrently
• All transactions share a single disk buffer and a single

log
A b ff bl k h d t it d t d b• A buffer block can have data items updated by one or
more transactions

Logging is done as described earlier
• Log records of different transactions may beLog records of different transactions may be

interspersed in the log

75

The checkpointing technique and actions taken on
recovery have to be changedrecovery have to be changed

•since several transactions may be active when a
checkpoint is performed

Checkpoints are performed as before, except that the
checkpoint log record is now of the formcheckpoint log record is now of the form
<checkpoint L> where L is the list of transactions active at
the time of the checkpointp

• We assume no updates are in progress while the
checkpoint is carried out (will relax this later)

When the system recovers from a crash, it first does the
following:

76

following:
1. Initialize undo-list and redo-list to empty

2. Scan the log backwards from the end, stopping when
th fi t h k i t L d i f dthe first <checkpoint L> record is found.
For each record found during the backward scan:

• if the record is <T commit> add T to redo-list• if the record is <Ti commit>, add Ti to redo-list
• if the record is <Ti start>, then if Ti is not in

redo-list, add Ti to undo-list, i
3. For every Ti in L, if Ti is not in redo-list, add Ti to

undo-list

At this point undo-list consists of incomplete transactions
which must be undone and redo list consists of finishedwhich must be undone, and redo-list consists of finished
transactions that must be redone

77

• Recovery now continues as follows:
1. Scan log backwards from most recent record, stopping

when <Ti start> records have been encountered for
T i d li tevery Ti in undo-list

During the scan, perform undo for each log record
that belongs to a transaction in undo listthat belongs to a transaction in undo-list

2. Locate the most recent <checkpoint L> record
3 S l f d f th < h k i t L> d3. Scan log forwards from the <checkpoint L> record

till the end of the log
During the scan perform redo for each log recordDuring the scan, perform redo for each log record

that belongs to a transaction on redo-list

78

Example of Recovery

G h f h l i h hGo over the steps of the recovery algorithm on the
following log:

<T0 start>T0 start
<T0, A, 0, 10>
<T0 commit>
<T t t> /* S t t 1 t h */<T1 start> /* Scan at step 1 comes up to here */
<T1, B, 0, 10>
<T2 start>
<T2, C, 0, 10>
<T2, C, 10, 20>
<checkpoint {T1 T2}><checkpoint {T1, T2}>
<T3 start>
<T3, A, 10, 20>

T D 0 10

79

<T3, D, 0, 10>
<T3 commit>

Buffer ManagementBuffer Management
Log Record Buffering

Log records are buffered in main memory, instead of
being output directly to stable storageg p y g
• Log records are output to stable storage when a

block of log records in the buffer is full, or a log
force operation is executed

Log force is performed to commit a transaction by
forcing all its log records (including the commit
record) to stable storage

80

The rules below must be followed if log records are
buffered:buffered:
• Log records are output to stable storage in the order

in which they are createdin which they are created
• Transaction Ti enters the commit state only when the

log record <Ti commit> has been output to stablelog record <Ti commit> has been output to stable
storage

• Before a block of data in main memory is output toy p
the database, all log records pertaining to data in that
block must have been output to stable storage
• This rule is called the write-ahead logging or

WAL rule

81

• Strictly speaking WAL only requires undo
information to be output

Database Buffering

Database maintains an in-memory buffer of data blocks
• When a new block is needed, if buffer is full an

existing block needs to be removed from bufferexisting block needs to be removed from buffer
• If the block chosen for removal has been updated, it

must be output to diskmust be output to disk
If a block with uncommitted updates is output to disk,
log records with undo information for the updates are
output to the log on stable storage first
• (Write ahead logging)

N d h ld b i bl k h i iNo updates should be in progress on a block when it is
output to disk. Can be ensured as follows

82

• Before writing a data item, transaction acquires
exclusive lock on block containing the data itemexclusive lock on block containing the data item
• Lock can be released once the write is completed

•Such locks held for short duration are called
latches

• Before a block is output to disk, the system acquires
an exclusive latch on the blockan exclusive latch on the block

•Ensures no update can be in progress on the block

Database buffer can be implemented either
•in an area of real main-memory reserved for the
d bdatabase, or
•in virtual memory

83

Failure with Loss of Nonvolatile Storage
So far we assumed no loss of non-volatile storageSo far we assumed no loss of non volatile storage
Technique similar to checkpointing used to deal with
loss of non-volatile storage
– Periodically dump the entire content of the

database to stable storage
i b i d i h d– No transaction may be active during the dump

procedure; a procedure similar to checkpointing
must take placemust take place
• Output all log records currently residing in main

memory onto stable storage
• Output all buffer blocks onto the disk
• Copy the contents of the database to stable storage

84

• Output a record <dump> to log on stable storage

Recovering from Failure of Non-Volatile Storage

To recover from disk failure
• restore database from most recent dump
• Consult the log and redo all transactions thatg

committed after the dump
Can be extended to allow transactions to be active
during dump; known as fuzzy dump or online dump

85

Recovering from Failure of Non-Volatile Storage

To recover from disk failure
• restore database from most recent dump
• Consult the log and redo all transactions thatg

committed after the dump
Can be extended to allow transactions to be active
during dump; known as fuzzy dump or online dump

86

Remote Backup Systems
Remote backup systems provide high availability byRemote backup systems provide high availability by
allowing transaction processing to continue even if the
primary site is destroyed

87

