Data on External Storage

« External Storage: offer persistent data storage

— Unlike physical memory, data saved on a persistent
storage Is not lost when the system shutdowns or

crashes. |
Types of External Storage Devices

e Magnetic Disks: Data can be retrieved randomly

« Tapes: Can only read pages In sequence
— Cheaper than disks

« Other types of persistent storage devices:
— Optical storage (CD-R, CD-RW, DVD-R, DVD-RW)
— Flash memory

A record is a tuple or a row in a table.
— Fixed-size records or variable-size records
A file 1s a collection of records.
— Store one table per file, or multiple tables in the same
file
A page is a fixed length block of data for disk 1/0O.
— Afile consists of pages.
— A data page contains a collection of records.

Typical page sizes are 4 and 8 KB.

File Organization

e Method of arranging a file of records on external storage.
— Record 1d (rid) is used to locate a record on a disk

— Indexes are data structures to efficiently search rids of

given values
DB Storage and Indexing
e Layered Architecture

— Disk Space Manager allocates/de-allocates spaces on
disks.

— Buffer manager moves pages between disks and main
memory.

— File and index layers organize records on files, and
manage the indexing data structure.

Alternative File Organizations

e Many alternatives exist, each ideal for some situations,
and not so good In others:

- Heap files: Records are unsorted. Suitable when
typical access Is a file scan retrieving all records
without any order.

- Fast update (insertions / deletions)
— Sorted Files: Records are sorted. Best If records

must be retrievec

records 1S needed.

In some order, or only a range’ of

- Examples: em

nloyees are sorted by age.

- Slow update in comparison to heap file.

- Indexes: Data structures to organize records via
trees or hashing.

- For example, create an index on employee age.

- Like sorted files, speed up searches for a
subset of records that match values in certain
(“search key”) fields

. Updates are much faster than in sorted files.

Indexes

« An index on a file speeds up selections on the search key
fields for the index.

— Any subset of the attributes of a table can be the search
key for an index on the relation.

— Search key does not have to be candidate key
- Example: employee age Is not a candidate key.
. ﬁ\ﬂ) Index file contains a collection of data entries (called
— Quickly search an index to locate a data entry with a
key value k.
« Example of a data entry: <age, rid>
— Can use the data entry to find the data record.
« Example of a data record: <name, age, salary>
— Can create multiple indexes on the same data records.
« Example indexes: age, salary, name

* Three alternatives for what to store in a data entry:
— (Alternative 1): Data record with key value k
« Example data record = data entry: <age, name, salary>

— (Alternative 2): <k, rid of data record with search key
value k>

e Example data entry: <age, rid>

— (Alternative 3): <k, list of rids of data records with
search key k>

« Example data entry: <age, rid_1,rid 2, ...>

« Choice of alternative for data entries iIs independent of the
Indexing method.

— Indexing method takes a search key and finds the data
entries matching the search key.

— Examples of indexing methods: B+ trees or hashing.

Indexing Example

Search l{e:,r value: find emplnj,rees with age = 25

Index Data Structure: Index File
(Bt Tree) \ ndex entries + (Small for
(Hash) dexing method efficient
search)

\ Ddata eniries
(k=25, Paul's rid)

Data File
(Large)

Index Classification

* Primary vs. secondary: If search key contains primary
key, then called primary index.

— Unique index: Search key contains a candidate key

e Clustered vs. unclustered: If order of data records Is
same as, or close to the order of data entries, then i1t Is
called clustered index.

One clustered index and multiple unclustered indexes
— Why is this important?

- Consider the cost of range search query: find all
records 30<age<39

Clustered vs. Unclustered Index

e Cost of retrieving data records through index varies
greatly based on whether index is clustered or not!

- Examples: retrieve all the employees of ages 30~39.
. Cost = number of pages retrieved

mr = # matched records; mp = # pages containing
matched records

CLLISTERE/\ S [CLLISTERED

/|t

Difz enties Dtz enties
i AN A
o

Diata Beaonds Dita Beconds

Hash-Based Indexes

e Good for equality selections.

— Data entries (key, rid) are grouped into buckets.

— Bucket = primary page plus zero or more overflow
nages.

— Hashing function h: h(r) = bucket in which record r
nelongs. h looks at the search key fields of r.

— If Alternative (1) is used, the buckets contain the data
records.

Srnith, 44, 3000
Hiage =00

]n:nnes, 4], 6003

s

Jshby, 25, 2000
Basu, 33, 4002 's Hiage 701

Bristow, 29 2007

Cwerflow page

13

e Search on key value:
— Apply key value to the hash function -> bucket number

— Retrieve the primary page of the bucket. Search
records In the primary page. If not found, search the
overflow pages.

— Cost of locating rids: # pages in bucket (small)
 Insert a record:
— Apply key value to the hash function -> bucket number

— If all (primary & overflow) pages in that bucket are full,
allocate a new overflow page.

— Cost: similar to search.
e Delete a record
— Cost: Similar to search.

Tree-structured Indexing

e Tree-structured indexing techniques support both range
searches and equality searches

 |ISAM: static structure:

e B+ tree: dynamic, adjusts gracefully under inserts and
deletes.

15

Indexed Sequential Access Methods

File creation: Leaf (data) pages allocated sequentially,
sorted by search key; then index pages allocated, then
space for overflow pages.

Index entries: <search key value, page 1d>;

“direct’ search for data entries, which are in leaf
pages.
Search: Start at root; use key comparisons to go to
leaf. Cost log N ; F =# pointers/index pg, N = #
leaf pgs

Insert: Find leaf that data entry belongs to, and put it
there, which may be in the primary or overflow area.

Delete: Find and remove from leaf; if empty overflow
page, de-allocate.

16

Data Pages

Index Pages

Overflow Pages

Static tree structure: inserts/deletes affect only leaf pages.

- Frequent updates may cause the structure to degrade
- Index pages never change
- some range of values may have too many overflow
pages
e.g., inserting many values between 40 and 51.

17

index entry
I

Non-leaf l
Pages cow
; l:

— /¢ \ [g\ [4\ L4\
Leaf .- .. .o R
Pages)) > < >

Overflow ------- > \\ ,/'/,/"/
page NV

Primary pages

Leaf pages contain data entries.

Root

20

33

40

51

63

10*

15*

20*

27*

33*

37*

40*

46*

ol1*

55*

63*

97*

After Inserting 23*, 48*, 41*, 42* ...

Root ~—~a.

Index 2 40
Pages / \

20 | | 33 51163

/.
Primary \\
Leaf 10* | 15* 20* 27 33* | 37* 40* | 46%* 51* 55* 63* 97*
Pages \ \

! v
Overflow 23* agr | 4l
Pages l

42*

Suppose we now delete 42*, 51*, 97*.

20

Index

Pages

...Then Deleting 42*, 51*, 97*

Root —~—=a.

40

ST

20

33 51|63

Primary
Leaf
Pages

\ /1N

10*

15*

20*

27* 33* | 37* 40* | 46* 55* 63*

Overflow

Pages

23*

48* | 41*

note that 51 still appears in the index page!

21

B+ Tree: The Most Widely Used Index

Dynamic structure - can be updated without using overflow pages!
Balanced tree in which internal nodes direct the search and the data entries contain the data.
— Index entries same as ISAM
— Data entries one of the 3 alternatives.
Main characteristics:
— Insert/delete at log - N cost; keep tree height-balanced. (F = fanout,
N = # leaf pages)
— Minimum 50% occupancy (except for root). Each node contains d <= m <= 2d entries.
The parameter d is called the order of the tree.

— Supports equality and range-searches efficiently.
Leaf pages are organized into doubly linked lists

Index Entries
(Direct search)

Data Entries

(*"Sequence set"’)
22

« Search begins at root, and key comparisons direct it to a leaf.
o Search for 5*, 15*, all data entries >= 24* ...

Root \

13 17 24 30

P P B Lo
2% | 3* | 5* | 7* 14* 16* 194 20* 22* 24*| 27* 29* 33*| 34*| 38*(39*

Inserting a Data Entry into a B+ Tree

Find correct leaf L.
Put data entry onto L.
- If L has enough space, done!
- Else, must split L (into L and a new node L2)
 Redistribute entries evenly, copy up middle key.
* Insert index entry pointing to L2 into parent of L.
This can happen recursively

- Tosplit index node, redistribute entries evenly, but push up middle key. (Contrast with
leaf splits.)

Splits “grow” tree; root split increases height.
— Tree growth: gets wider or one level taller at top.

23

Observe how
minimum
occupancy is
guaranteed in
both leaf and
Index pg splits.
Note difference
between copy-up
and push-up; be
sure you
understand the
reasons for this.

Inserting 8* into Example B+ Tree

2*

3*

5*

7*

8*

17

13

24

30

24

Example B+ Tree After Inserting 8*

Roo&

17

/ |

) 13 24 30
(N h 4 <
2%| 3* S*| 7*| 8* 14% 16* 197 20% 22*4 24* 271 29% 33% 34% 38* 39

¢ Notice that root was split, leading to increase in height.

¢ In this example, we can avoid split by re-distributing

this is usually not done in practice.

entries; however,

25

Re-Distribution
Re-distribute entries of a node N with a sibling before splitting the
node
— Improves average occupancy
— Sibling is node that shares the same parent
Re-distribution requires that we retrieve sibling nodes, check for space.
— If sibling full, need to split anyways!
Useful in limited scenarios

— If leaf node is being split, we need to re-adjust the double-linked
list pointers

— Retrieving siblings anyways, so no overhead!

e |nsertion of 8* into the tree

Root \\\\

13 17 24 30

2% | 3* [5* | 7* 14* 16* 197 20* 22* 24*| 27% 29* 33*| 34*| 38*(39*

Sibling can accommodate an entry — so re-distribute
-re-distribute entries
-Copy-up the new low key value from the second leaf node

After Re-distribution

Root \

8 17 24 30

AN

S* | 7* 8* | 14*[16* 1979 20%| 22* 24> 27* 29* 33*| 34*| 38*| 39*

Deleting a Data Entry from a B+ Tree

Start at root, find leaf L where entry belongs.
Remove the entry.

— If Lis at least half-full, done!

— If L has only d-1 entries,

» Try to re-distribute, borrowing from sibling (adjacent node with
same parent as L).

o If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to L or sibling) from parent of
L.

Merge could propagate to root, decreasing height.

29

Deleting 19* and then 20*

/ |

Roo&

17

13

/

N o

K A

| ‘\\\\\\\\\\\\\\\\‘#s

24

30

y,

e

2*

3*

5*

7*

8*

14% 16%

19t

203

227

244

277

29%

33*%

343

38%

39%

Deletion of 19* = leaf node is not below the minimum number of entries

after the deletion of 19*. No re-adjustments needed.

Deletion of 20* = leaf node falls below minimum number of entries

e re-distribute entries

* copy-up low key value of the second node

30

Roo\

17

5 13 l 27 30
4 N y N
5% 7*| 8* 14*| 16* 22% 24% 27*| 29* 33*| 34*| 38*| 39*

Deleting 19* Is easy.
Deleting 20* Is done with re-distribution. Notice
now middle key Is copied up.

31

... And Then Deleting 24*

\\\\\\\\\\\\fi

e Must merge.
e Observe toss’ of index M

entry (on rl,ght)_, and / .

pull down’ of index

22* | 27* | 29* 33* | 34* [38* |39*
entry (below).
R;;:\\\\‘
5 13 17 30
KT A KT A KT A K A
2* | 3% 5% | 7| 8* 14% | 16% 22%| 27%| 29* 33* | 34* | 38* | 39*

Example of Non-leaf Re-distribution

Tree is shown below during deletion of 24*. (What could be a possible initial
tree?)

In contrast to previous example, can re-distribute entry from left child of root to
right child.

Roc\A
22

5 || 13|17 || 20 30

R) | \ \ h
F 27T 297 33713473

2% 3* S5* 7*| 8* 14% 16% 17718% 2071 21% 227 27129

871397

33

 Intuitively, entries are re-distributed by pushing through

After Re-distribution

the splitting entry in the parent node.

o |t suffices to re-distribute index entry with key 20; we’ve
re-distributed 17 as well for illustration.

Roé?\\\\\

/ |

13

17

LT

20

22

30

P

2*

3*

16%

17%4

184

20%

21%

22

277

29%

33%

34*38*

39*

