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Random Process

• A random variable is a function X(e) that maps the set of ex-
periment outcomes to the set of numbers.

• A random process is a rule that maps every outcome e of an
experiment to a function X(t, e).

• A random process is usually conceived of as a function of time,
but there is no reason to not consider random processes that are
functions of other independent variables, such as spatial coordi-
nates.

• The function X(u, v, e) would be a function whose value de-
pended on the location (u, v) and the outcome e, and could be
used in representing random variations in an image.
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Random Process

• The domain of e is the set of outcomes of the experiment. We
assume that a probability distribution is known for this set.

• The domain of t is a set, T , of real numbers.

• If T is the real axis then X(t, e) is a continuous-time random
process

• If T is the set of integers then X(t, e) is a discrete-time random
process

• We will often suppress the display of the variable e and write X(t)
for a continuous-time RP and X[n] or Xn for a discrete-time RP.
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Random Process

• A RP is a family of functions, X(t, e). Imagine a giant strip chart

recording in which each pen is identified with a different e. This

family of functions is traditionally called an ensemble.

• A single function X(t, ek) is selected by the outcome ek. This is

just a time function that we could call Xk(t). Different outcomes

give us different time functions.

• If t is fixed, say t = t1, then X(t1, e) is a random variable. Its

value depends on the outcome e.

• If both t and e are given then X(t, e) is just a number.
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Random Processes
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Moments and Averages

X(t1, e) is a random variable that represents the set of samples across
the ensemble at time t1

If it has a probability density function fX(x; t1) then the moments

are

mn(t1) = E[Xn(t1)] =
∫ ∞
−∞

xnfX (x; t1) dx

The notation fX(x; t1) may be necessary because the probability

density may depend upon the time the samples are taken.

The mean value is µX = m1, which may be a function of time.

The central moments are

E[(X(t1) − µX(t1))
n] =

∫ ∞
−∞

(x − µX(t1))
n fX (x; t1) dx
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Pairs of Samples

The numbers X(t1, e) and X(t2, e) are samples from the same time

function at different times.

They are a pair of random variables (X1, X2).

They have a joint probability density function f(x1, x2; t1, t2).

From the joint density function one can compute the marginal den-

sities, conditional probabilities and other quantities that may be of

interest.
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Covariance and Correlation

The covariance of the samples is

C(t1, t2) = E[(X1 − µ1)(X2 − µ2)
∗]

=
∫∫ ∞

−∞
(x1 − µ1)(x2 − µ2)

∗f(x1, x2; t1, t2)dx1dx2

The correlation function is

R(t1, t2) = E[X1X∗
2] =

∫∫ ∞
−∞

x1x∗2f(x1, x2; t1, t2)dx1dx2

C(t1, t2) = R(t1, t2) − µ1µ2

Note that both the covariance and correlation functions are conju-

gate symmetric in t1 and t2. C(t1, t2) = C∗(t2, t1) and R(t1, t2) =

R∗(t2, t1)
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Mean-Squared Value

The “average power” in the process at time t is represented by

R(t, t) = E[|X(t)|2]

and C(t, t) represents the power in the fluctuation about the mean

value.

Lecture 12 8

Example: Poisson Random Process

Let N(t1, t2) be the number of events produced by a Poisson process

in the interval (t1, t2) when the average rate is λ events per second.

The probability that N = n is

P [N = n] =
(λτ)n e−λτ

n!

where τ = t2 − t1. Then E[N(t1, t2)] = λτ.

A random process can be defined as the number of events in the

interval (0, t). Thus, X(t) = N(0, t). The expected number of events

in t is E[X(t)] = λt.
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Example-continued

For a Poisson distribution we know that the variance is

E[(X(t) − λt)2] = E[X2(t)] − (λt)2 = λt

The “average power” in the function X(t) is

E[X2(t)] = λt + λ2t2

A graph of X(t) would show a function fluctuating about an average

trend line with a slope λ.
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Program for Poisson Random Process
FUNCTION PoissonProcess,t,lambda,p
; S=PoissonProcess(t,lambda,p)
; divides the interval [0,t] into intervals of size
; deltaT=p/lambda where p is sufficiently small so that
; the Poisson assumptions are satisfied.
;
; The interval (0,t) is divided into n=t*lambda/p intervals
; and the number of events in the interval (0,k*deltaT) is
; returned in the array S. The maximum length of S is 10000.
;
; USAGE
; S=PoissonProcess(10,1,0.1)
; Plot,S
; FOR m=1,10 DO OPLOT,PoissonProcess(10,1,0.1)

NP=N_PARAMS()
IF NP LT 3 THEN p=0.1
n=lambda*t/p
u=RANDOMN(SEED,n,POISSON=p)
s=INTARR(n+1)
FOR k=1,n DO s[k]=s[k-1]+u[k-1]
RETURN,s
END

Lecture 12 12

Random Telegraph Signal

Consider a random process that has the following properties:

1. X(t) = ±1,

2. The number of zero crossings in the interval (0, t) is described

by a Poisson process

3. X(0) = 1. (to be removed later)

Find the expected value at time t.
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Random Telegraph Signal

Let N(t) equal the number of zero crossings in the interval (0, t).

with t ≥ 0.

P (N = n) =
(λt)n e−λt

n!

P [X(t) = 1] = P [N = even number]

= e−λt

[
1 +

(λt)2

2!
+

(λt)4

4!
+ · · ·

]

= e−λt coshλt

P [X(t) = −1] = P [N = odd number]

= e−λt

[
λt +

(λt)3

3!
+

(λt)5

5!
+ · · ·

]

= e−λt sinhλt
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Random Telegraph Signal

The expected value is

E[X(t)|X(0) = 1] = e−λt coshλt − e−λt sinhλt = e−2λt

Note that the expected value decays toward x = 0 for large t. That

happens because the influence of knowing the value at t = 0 decays

exponentially.
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Random Telegraph Signal

The autocorrelation function is computed by finding R(t1, t2) =

E [X (t1)X (t2)] . Let x0 = −1 and x1 = 1 denote the two values

that X can attain. For the moment assume that t2 ≥ t1. Then

R(t1, t2) =
1∑

j=0

1∑
k=0

xjxkP [X(t1) = xk]P [X(t2) = xj|X(t1) = xk]

The first term in each product is given above. To find the conditional

probabilities we take note of the fact that the number of sign changes

in t2 − t1 is a Poisson process. Hence, in a manner that is similar to

the analysis above,

P [X(t2) = 1|X(t1) = 1] = P [X(t2) = −1|X(t1) = −1]

= e−λ(t2−t1) coshλ(t2 − t1)
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Random Telegraph Signal

P [X(t2) = −1|X(t1) = 1] = P [X(t2) = 1|X(t1) = −1]

= e−λ(t2−t1) sinhλ(t2 − t1)

Hence

R(t1, t2) = e−λt1 coshλt1
[
e−λ(t2−t1) coshλ(t2 − t1) − e−λ(t2−t1) sinhλ(t2 − t1)

]
−e−λt1 sinhλt1

[
e−λ(t2−t1) coshλ(t2 − t1) − e−λ(t2−t1) sinhλ(t2 − t1)

]

After some algebra this reduces to

R(t1, t2) = e−λ(t2−t1) for t2 ≥ t1

A parallel analysis applies to the case t2 ≤ t1, so that

R(t1, t2) = e−λ|t2−t1|
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Random Telegraph Signal

The autocorrelation for the telegraph signal depends only upon the
time difference, not the location of the time interval. We will see
soon that this is a very important characteristic of stationary random
processes.

We can now remove condition (3) on the telegraph process. Let
Y (t) = AX(t) where A is a random variable independent of X that
takes on the values ±1 with equal probability. Then Y (0) will equal
±1 with equal probability, and the telegraph process will no longer
have the restriction of being positive at t = 0.

Since A and X are independent, the autocorrelation for Y (t) is given
by

E [Y (t1)Y (t2)] = E[A2]E [X(t1)X (t2)] = e−λ|t2−t1|

since E[A2] = 1.
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Stationary Random Process

The random telegraph is one example of a process that has at least

some statistics that are independent of time. Random processes

whose statistics do not depend on time are called stationary.

In general, random processes can have joint statistics of any order.

If the process is stationary, they are independent of time shift.

The first order statistics are described by the cumulative distribution

function F (x; t). If the process is stationary then the distribution

function at times t = t1 and t = t2 will be identical.

If a process is strict-sense stationary then joint probability distribu-

tions of all orders are independent of time origin.
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Wide-sense Stationary Processes

We often are particularly interested in processes that are stationary

up to at least order n = 2. Such processes are called wide-sense

stationary (wss).

If a process is wss then its mean, variance, autocorrelation function

and other first and second order statistical measures are independent

of time.

We have seen that a Poisson random process has mean µ(t) = λt,

so it is not stationary in any sense.

The telegraph signal has mean µ = 0, variance σ2 = 1 and autocor-

relation function R(t1, t2) = R(τ) = e−λτ where τ = |t2 − t1| . It is a

wss process.
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Correlation and Covariance

The autocorrelation function of a wss process satisfies

R(τ) = E[X(t)X(t + τ)]

for any value of t. Then

R(0) = E[X2]

The covariance function is

C(τ) = E[(X(t) − µ) (X(t + τ) − µ)] = R(τ) − µ2

C(0) = E[(X(t) − µ)2] = σ2
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Correlation and Covariance

Two random processes X(t) and Y (t) are called jointly wide-sense

stationary if each is wss and their cross correlation depends only on

τ = t2 − t1. Then

Rxy(τ) = E[X(t)Y (t + τ)]

is called the cross-correlation function and

Cxy(τ) = Rxy(τ) − µxµy

is called the cross-covariance function.
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Simplification with Wide-Sense Stationary

A stochastic process x(t) is wss if its mean is constant

E[x(t)] = µ

and its autocorrelation depends only on τ = t1 − t2

Rxx(t1, t2) = E[x(t1)x
∗(t2)]

E[x(t + τ)x∗(t)] = Rxx(τ)

Because the result is indifferent to time origin, it can be written as

Rxx(τ) = E

[
x

(
t +

τ

2

)
x∗

(
t +

τ

2

)]

Note that Rxx(−τ) = R∗
xx(τ) and

Rxx(0) = E[|x(t)|2]
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Example

Suppose that x(t) is wss with

Rxx(τ) = Ae−bτ

Determine the second moment of the random variable x(6) − x(2).

E[(x(6) − x(2))2] = E[x2(6)] − 2E[x(6)x(2)] + E[x2(2)]

= Rxx(0) − 2Rxx(4) + Rxx(0)

= 2A − Ae−4b

Determine the second moment of x(12) − x(8)

E[(x(12) − x(8))2] = E[x2(12)] − 2E[x(12)x(8)] + E[x2(8)]

= Rxx(0) − 2Rxx(4) + Rxx(0)

= 2A − Ae−4b
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Ergodic Random Process

A practical problem arises when we want to calculate parameters
such as mean or variance of a random process. The definition would
require that we have a large number of examples of the random
process and that we calculate the parameters for different values of
t by averaging across the ensemble.

Often we are faced with the situation of having only one member
of the ensemble–that is, one of the time functions. Under what
circumstances is it appropriate to use it to draw conclusions about
the whole ensemble?

A random process is ergodic if every member of the process car-
ries with it the complete statistics of the whole process. Then its
ensemble averages will equal appropriate time averages.

Of necessity, an ergodic process must be stationary, but not all
stationary processes are ergodic.
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