Machine learning / Regression

It attempts to determine the strength of the relationship between 1 dependent variable and a series of other changing variables (independent variables).

Statistical Calculation Python Program
Regression import matplotlib.pyplot as mplobject
from scipy import stats
xpts = [3,5,7,9,2,20,2,8,4,14,10,7,4]
ypts = [79,65,48,66,120,85,110,99,86,84,99,69,74]
slope, intercept, r, p, std_err = stats.linregress(xpts, ypts)
def ourfunc(xpts):
return slope * xpts + intercept
ourmodel = list(map(ourfunc, xpts))
mplobject.scatter(xpts, ypts)
mplobject.plot(xpts, ourmodel)
mplobject.show()

Histogram
Polynomial Regression Using Numpy It uses the relationship between the variables x and y to find the best way to draw a line through the data points.

Statistical Calculation Python Program
Polynomial Regression import numpy
import matplotlib.pyplot as mplobject
xpts = [3,5,7,9,2,20,2,8,4,14,10,7,4]
ypts = [79,65,48,66,120,85,110,99,86,84,99,69,74]
ourmodel = numpy.poly1d(numpy.polyfit(xpts, xpts, 3))
ourline = numpy.linspace(1, 22, 100)
mplobject.scatter(xpts, xpts)
mplobject.plot(ourline, ourmodel(ourline))
mplobject.show()

Histogram

Multiple Regression Using Numpy
It is used to predict a value depends on 2 / more variables. i.e. it is similar to linear regression.

Consider the below data set("products.csv").
Product price quantity profit category productconditiongood
A1 200 190 49 x YES
A2 400 560 45 x YES
A3 200 329 45 x YES
A4 100 265 40 x YES
A5 700 540 55 x YES
A6 200 329 55 x YES
A7 600 509 40 x YES
A8 700 765 42 x YES
A9 700 512 48 x YES
A10 800 550 49 x YES
A11 300 380 49 x YES
A12 500 390 51 x YES
A13 200 512 49 x YES
A14 800 652 44 x YES
A15 800 726 47 x YES
A16 800 730 47 y YES
A17 800 765 49 y YES
A18 1400 680 54 y YES
A19 800 519 54 y YES
A20 1200 728 55 y YES
A21 800 984 44 y NO
A22 1200 828 49 y NO
A23 1300 765 49 y NO
A24 800 815 49 y NO
A25 1200 815 49 y NO
A26 700 865 52 y NO
A27 1200 890 54 y NO
A28 1200 1125 64 y NO
A29 800 923 59 z NO
A30 1200 1105 64 z NO
A31 1300 1005 65 z NO
A32 1200 1146 67 z NO
A33 800 635 54 z NO
A34 800 790 58 z NO
A35 800 805 59 z NO
A36 1700 795 70 z NO


Predict Profit of Products Based On Quantity and Price
Statistical Calculation Python Program Output
Polynomial Regression import pandas
from sklearn import linear_model
fp = pandas.read_csv("products.csv")
Xpoints = fp[['price', 'quantity']]
ypoints = fp['profit']
regr = linear_model.LinearRegression()
regr.fit(Xpoints, ypoints)
#predict profit of a products where price=2300 and quantity = 1200
predictprofit = regr.predict([[300, 1200]])
print(predictprofit)
[51.87220766]


Home     Back