S.NO	SHAPE	FORMULA	UNIT
1	CUBOID	Volume = $(l x b x h)$	Cubic units
	Here length = l, breadth = b &	Surface area = $2(lb + bh + lh)$	square units
	height $=$ h units.	Diagonal = 12 + b2 + h2	Units
2	CUBE	Volume = a^3	Cube units
	Here each edge of a cube be of	Surface area = $6a^2$	square units
	length a.	Diagonal = 3a	units
3	CYLINDER	Volume = $\pi r^2 h$	Cube units.
	Here radius of base = $r \&$	Curved surface area $= 2$ rh	square units
	Height/length = h.	Total surface area = $2\pi r (h + r)$	square units
		square units.	
4	CONE	Slant height $L = h^2 + r^2$	Units
	Here radius of base = $r \& Height = h$.	Volume = $\pi r^2 h / 3$	Cube units.
		Curved surface area = π rl	square units
		Total surface area = $(\pi r l + \pi r^2)$	square units
5	SPHERE	Volume = $4\pi r^3 / 3$	Cube units.
	Here the radius of the sphere be r.	Surface area = $4\pi r^2$	square units
6	HEMISPHERE	Volume = $2\pi r^3 / 3$	Cube units.
	Here radius of a hemisphere be r.	Curved surface area = $2\pi r^2$	square units
		Total surface area = $3\pi r^2$	square units

Volume and Surface Area

Problems with solutions

1. A hall is 15 m long and 12 m broad. If the sum of the areas of the floor and the ceiling is equal to the sum of the areas of four walls, the volume of the hall is:

Solution

2(15 + 12) x h = 2(15 x 12) h = $\frac{180}{27}$ m = $\frac{20}{3}$ m. Volume = $\left(15 x 12 x \frac{20}{3}\right)_{m^3}$ = 1200 m³.

2. 66 cubic centimetres of silver is drawn into a wire 1 mm in diameter. The length of the wire in metres will be:

Solution

Let the length of the wire be h.

Radius =
$$\frac{1}{2}$$
mm = $\frac{1}{20}$ cm.
 $\frac{22}{7} \times \frac{1}{20} \times \frac{1}{20} \times h = 66.$
 $h = \frac{66 \times 20 \times 20 \times 7}{22} = 8400$ cm = 84 m.

3. A boat having a length 3 m and breadth 2 m is floating on a lake. The boat sinks by 1 cm when a man gets on it. The mass of the man is:

Solution

Volume of water displaced = $(3 \times 2 \times 0.01) \text{ m}^3$

$$= 0.06 \text{ m}^3$$
.

Mass of man = Volume of water displaced x Density of water

4. 50 men took a dip in a water tank 40 m long and 20 m broad on a religious day. If the average displacement of water by a man is 4 m^3 , then the rise in the water level in the tank will be:

Solution

Total volume of water displaced = $(4 \text{ x } 50) \text{ m}^3 = 200 \text{ m}^3$. \therefore Rise in water level = $\left(\frac{200}{40 \text{ x } 20}\right)_{\text{m}} 0.25 \text{ m} = 25 \text{ cm}$. 5. A cistern 6m long and 4 m wide contains water up to a depth of 1 m 25 cm. The total area of the wet surface is:

Solution

Area of the wet surface = [2(lb + bh + lh) - lb]

= 2(bh + lh) + lb= [2 (4 x 1.25 + 6 x 1.25) + 6 x 4] m² = 49 m².