Volume and Surface Area

S.NO	SHAPE	FORMULA	UNIT
1	CUBOID Here length $=1$, breadth $=b$ \& height $=\mathrm{h}$ units.	Volume $=(1 \times b \times h)$	Cubic units
		Surface area $=2(\mathrm{lb}+\mathrm{bh}+\mathrm{lh})$	square units
		Diagonal $=12+\mathrm{b} 2+\mathrm{h} 2$	Units
2	CUBE Here each edge of a cube be of length a.	Volume $=\mathrm{a}^{3}$	Cube units
		Surface area $=6 \mathrm{a}^{2}$	square units
		Diagonal $=3 \mathrm{a}$	units
3	CYLINDER Here radius of base $=r$ \& Height/length $=\mathrm{h}$.	Volume $=\pi \mathrm{r}^{2} \mathrm{~h}$	Cube units.
		Curved surface area $=2 \mathrm{rh}$	square units
		Total surface area $=2 \pi r(h+r)$ square units.	square units
4	CONE Here radius of base $=r$ \& Height $=h$.	Slant height $\mathrm{L}=\mathrm{h}^{2}+\mathrm{r}^{2}$	Units
		Volume $=\pi \mathrm{r}^{2} \mathrm{~h} / 3$	Cube units.
		Curved surface area $=\pi \mathrm{rl}$	square units
		Total surface area $=\left(\pi \mathrm{rl}+\pi \mathrm{r}^{2}\right)$	square units
5	SPHERE Here the radius of the sphere be r .	Volume $=4 \pi \mathrm{r}^{3} / 3$	Cube units.
		Surface area $=4 \pi \mathrm{r}^{2}$	square units
6	HEMISPHERE Here radius of a hemisphere be r .	Volume $=2 \pi \mathrm{r}^{3} / 3$	Cube units.
		Curved surface area $=2 \pi \mathrm{r}^{2}$	square units
		Total surface area $=3 \pi \mathrm{r}^{2}$	square units

Problems with solutions

1. A hall is 15 m long and 12 m broad. If the sum of the areas of the floor and the ceiling is equal to the sum of the areas of four walls, the volume of the hall is:

Solution

$2(15+12) \times \mathrm{h}=2(15 \times 12)$
$\mathrm{h}=\frac{180}{27} \mathrm{~m}=\frac{20}{3} \mathrm{~m}$.
Volume $=\left(15 \times 12 \times \frac{20}{3}\right)_{\mathrm{m}^{3}}=1200 \mathrm{~m}^{3}$.
2. 66 cubic centimetres of silver is drawn into a wire 1 mm in diameter. The length of the wire in metres will be:

Solution

Let the length of the wire be h.
Radius $=\frac{1}{2} \mathrm{~mm}=\frac{1}{20} \mathrm{~cm}$.

$$
\frac{22}{7} \times \frac{1}{20} \times \frac{1}{20} \times \mathrm{h}=66
$$

$$
\mathrm{h}=\frac{66 \times 20 \times 20 \times 7}{22}=8400 \mathrm{~cm}=84 \mathrm{~m} .
$$

3. A boat having a length 3 m and breadth 2 m is floating on a lake. The boat sinks by 1 cm when a man gets on it. The mass of the man is:

Solution

Volume of water displaced $=(3 \times 2 \times 0.01) \mathrm{m}^{3}$

$$
=0.06 \mathrm{~m}^{3} .
$$

Mass of man $=$ Volume of water displaced x Density of water

$$
\begin{aligned}
& =(0.06 \times 1000) \mathrm{kg} \\
& =60 \mathrm{~kg} .
\end{aligned}
$$

4. 50 men took a dip in a water tank 40 m long and 20 m broad on a religious day. If the average displacement of water by a man is $4 \mathrm{~m}^{3}$, then the rise in the water level in the tank will be:

Solution

Total volume of water displaced $=(4 \times 50) \mathrm{m}^{3}=200 \mathrm{~m}^{3}$.
\therefore Rise in water level $=\left(\frac{200}{40 \times 20}\right)_{\mathrm{m}} 0.25 \mathrm{~m}=25 \mathrm{~cm}$.
5. A cistern 6 m long and 4 m wide contains water up to a depth of 1 m 25 cm . The total area of the wet surface is:

Solution

Area of the wet surface $=[2(\mathrm{lb}+\mathrm{bh}+\mathrm{lh})-\mathrm{lb}]$

$$
\begin{aligned}
& =2(\mathrm{bh}+\mathrm{lh})+\mathrm{lb} \\
& =[2(4 \times 1.25+6 \times 1.25)+6 \times 4] \mathrm{m}^{2} \\
& =49 \mathrm{~m}^{2} .
\end{aligned}
$$

