Time and Work

1. Work from Days

If a person X can do a piece of work in n days, then X 's 1 day's work $=1 / n$
2. Days from Work

If X's 1 day's work $=1 / \mathrm{n}$, then X can finish the work in n days.
3. Ratio

If person X is 3 times as good a workman as Y ,
Ratio of work done by X and $\mathrm{Y}=3: 1$.
Ratio of times taken by X and Y to finish a work $=1: 3$.

Problems with solutions

1. A, B and C can do a piece of work in 20, 30 and 60 days respectively. In how many days can A do the work if he is assisted by B and C on every third day?

Solution
A's 2 day's work $=\left(\frac{1}{20} \times 2\right)=\frac{1}{10}$.
$(A+B+C)$'s 1 day's work $=\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{60}\right)=\frac{6}{60}=\frac{1}{10}$.
Work done in 3 days $=\left(\frac{1}{10}+\frac{1}{10}\right)=\frac{1}{5}$.
Now, $\frac{1}{5}$ work is done in 3 days.
\therefore Whole work will be done in $(3 \times 5)=15$ days.
2. A is thrice as good as workman as B and therefore is able to finish a job in 60 days less than B. Working together, they can do it in:

Solution

Ratio of times taken by A and $\mathrm{B}=1: 3$.
The time difference is (3-1) 2 days while B take 3 days and A takes 1 day.
If difference of time is 2 days, B takes 3 days.
If difference of time is 60 days, B takes $\left(\frac{3}{2} \times 60\right)=90$ days.
So, A takes 30 days to do the work.
A's 1 day's work $=\frac{1}{30}$
B's 1 day's work $=\frac{1}{90}$
$(\mathrm{A}+\mathrm{B})$'s 1 day's work $=\frac{1}{30}+\frac{1}{90}=\frac{4}{90}=\frac{2}{45}$
\therefore A and B together can do the work in $\frac{45}{2}=22 \frac{1}{2}$ days.
3.

If 6 men and 8 boys can do a piece of work in 10 days while 26 men and 48 boys can do the same in 2 days, the time taken by 15 men and 20 boys in doing the same type of work will be:
Solution
Let 1 man's 1 day's work $=x$ and 1 boy's 1 day's work $=y$.
Then, $6 x+8 y=\frac{1}{10}$ and $26 x+48 y=\frac{1}{2}$.
Solving these two equations, we get : $\mathrm{x}=\frac{1}{100}$ and $\mathrm{y}=\frac{1}{200}$.
$\left(15\right.$ men +20 boy)'s 1 day's work $=\frac{15}{100}+\frac{20}{200}=\frac{1}{4}$.
$\therefore 15$ men and 20 boys can do the work in 4 days.
4. A can finish a work in 18 days and B can do the same work in 15 days. B worked for 10 days and left the job. In how many days, A alone can finish the remaining work?

Solution

B's 10 day's work $=\frac{1}{15} \times 10=\frac{2}{3}$.
Remaining work $=1-\frac{2}{3}=\frac{1}{3}$.
Now, $\frac{1}{18}$ work is done by A in 1 day.
$\therefore \frac{1}{3}$ work is done by A in $\left(18 \times \frac{1}{3}\right)=6$ days.
5. A and B can together finish a work 30 days. They worked together for 20 days and then B left. After another 20 days, A finished the remaining work. In how many days A alone can finish the work?
Solution
$(A+B)$'s 20 day's work $=\frac{1}{30} \times 20=\frac{2}{3}$.
Remaining work $=\left(1-\frac{2}{3}\right)=\frac{1}{3}$.
Now, $\frac{1}{3}$ work is done by A in 20 days.
Therefore, the whole work will be done by A in $(20 \times 3)=60$ days.

