Time and Distance

Speed = Distance / Time

Conversions	
$\mathbf{k m} / \mathbf{h r}$ to $\mathbf{~ m} / \mathbf{s e c}$	$\mathbf{m} / \mathbf{s e c}$ to $\mathbf{k m} / \mathbf{h r}$
$\mathrm{x} \mathrm{km} / \mathrm{hr}=(\mathrm{x} * 5 / 18) \mathrm{m} / \mathrm{sec}$.	$\mathrm{x} \mathrm{m} / \mathrm{sec}=(\mathrm{x} * 18 / 5) \mathrm{km} / \mathrm{hr}$.

1. If the ratio of the speeds of X and Y is a : b, then the ratio of the times taken by then to cover the same distance is $1 / \mathrm{a}: 1 / \mathrm{b}$ or $\mathrm{a}: \mathrm{b}$.
2. If a person covers a certain distance at $x \mathrm{~km} / \mathrm{hr}$ and an equal distance at $\mathrm{y} \mathrm{km} / \mathrm{hr}$. Then, the average speed during the whole journey is $(2 x y / x+y) k m / h r$.

Problems with solutions

1. If a person walks at $14 \mathrm{~km} / \mathrm{hr}$ instead of $10 \mathrm{~km} / \mathrm{hr}$, he would have walked 20 km more. The actual distance travelled by him is:

Solution

Let the actual distance travelled be x km .
Then, $\frac{x}{10}=\frac{x+20}{14}$
$\Rightarrow 14 \mathrm{x}=10 \mathrm{x}+200$
$\Rightarrow 4 \mathrm{x}=200$
$\Rightarrow \mathrm{x}=50 \mathrm{~km}$.
2. Excluding stoppages, the speed of a bus is 54 kmph and including stoppages, it is 45 kmph . For how many minutes does the bus stop per hour?

Solution

Due to stoppages, it covers 9 km less.
Time taken to cover $9 \mathrm{~km}=\left(\frac{9}{54} \times 60\right)_{\text {min }}=10 \mathrm{~min}$.
3. A man complete a journey in 10 hours. He travels first half of the journey at the rate of 21 $\mathrm{km} / \mathrm{hr}$ and second half at the rate of $24 \mathrm{~km} / \mathrm{hr}$. Find the total journey in km .

Solution

$$
\begin{aligned}
& \frac{(1 / 2) x}{21}+\frac{(1 / 2) x}{24}=10 \\
& \Rightarrow \frac{x}{21}+\frac{\mathrm{x}}{24}=20 \\
& \Rightarrow 15 \mathrm{x}=168 \times 20 \\
& \Rightarrow \mathrm{x}=\left(\frac{168 \times 20}{}\right)=224 \mathrm{~km} .
\end{aligned}
$$

4. The ratio between the speeds of two trains is $7: 8$. If the second train runs 400 km in 4 hours, then the speed of the first train is:

Solution

Let the speed of two trains be 7 x and $8 \mathrm{xkm} / \mathrm{hr}$.
Then, $8 \mathrm{x}=\left(\frac{400}{4}\right)=100$
$x=\left(\frac{100}{8}\right)=12.5$
\therefore Speed of first train $=(7 \times 12.5) \mathrm{km} / \mathrm{hr}=87.5 \mathrm{~km} / \mathrm{hr}$.
5. A farmer travelled a distance of 61 km in 9 hours. He travelled partly on foot @ $4 \mathrm{~km} / \mathrm{hr}$ and partly on bicycle @ $9 \mathrm{~km} / \mathrm{hr}$. The distance travelled on foot is:

Solution

Let the distance travelled on foot be xkm .
Then, distance travelled on bicycle $=(61-x) \mathrm{km}$.
So, $\frac{x}{4}+\frac{(61-x)}{9}=9$
$9 x+4(61-x)=9 \times 36$
$5 \mathrm{x}=80$
$\mathrm{x}=16 \mathrm{~km}$.

