SURDS AND INDICES

S. No	Laws of Indices Formula
1	$X^{m} * X^{n} = X^{m+n}$
	$X^m / X^n = X^{m-n}$
	$(X^{m})^{n} = X^{m*n}$
	$X^{mn} = X^m * X^n$
	$X^0 = 1$

SURDS

Let x be rational number and n be a positive integer such that $x^{(1/n)} = x$. Here x is called a surd of order n.

S. No	Laws of Surds
	Formula
1	$(a / b)^{1/n} = a / b$
	$((a)^{1/n})^{1/m} = (a)^{1/m n}$

Problems with solutions

1. If $5^a = 3125$, then the value of $5^{(a-3)}$ is:

Solution

 $\begin{array}{ll} 5^{a}=3125 & \Leftrightarrow & 5^{a}=5^{5}\\ a=5,\\ 5^{(a-3)}=5^{(5-3)}=5^{2}=25 \end{array}$

2.
$$(25)^{7.5} \ge (5)^{2.5} \div (125)^{1.5} = 5^{?}$$

Solution

Let
$$(25)^{7.5} \times (5)^{2.5} \div (125)^{1.5} = 5^{x}$$
.
Then, $\frac{(5^{2})^{7.5} \times (5)^{2.5}}{(5^{3})^{1.5}} = 5^{x}$
 $\frac{5^{(2 \times 7.5)} \times 5^{2.5}}{5^{(3 \times 1.5)}} = 5x$
 $\frac{5^{15} \times 5^{2.5}}{5^{4.5}} = 5^{x}$
 $5^{x} = 5^{(15 + 2.5 - 4.5)}$
 $5^{x} = 5^{13}$
 $x = 13$.

3. $(0.04)^{-1.5} = ?$

Solution

$$(0.04)^{-1.5} = \left(\frac{4}{100}\right)^{-1.5}$$
$$= \left(\frac{1}{25}\right)^{-(3/2)}$$
$$= (25)^{(3/2)}$$
$$= (5^2)^{(3/2)}$$
$$= (5)^{2 \times (3/2)}$$
$$= 5^3$$
$$= 125.$$

4. If m and n are whole numbers such that $m^n = 121$, the value of $(m - 1)^{n+1}$ is:

Solution

We know that $11^2 = 121$. Putting m = 11 and n = 2, we get: $(m - 1)^{n+1} = (11 - 1)^{(2+1)} = 10^3 = 1000$.

5. Given that $10^{0.48} = x$, $10^{0.70} = y$ and $x^z = y^2$, then the value of z is close to:

Solution

 $\begin{aligned} x^z &= y^2 \\ 10^{(0.48z)} &= 10^{(2 \times 0.70)} = 10^{1.40} \\ 0.48z &= 1.40 \end{aligned}$

0.48z = 1.40 $z = \frac{140}{48} = \frac{35}{12} = 2.9 \text{ (approx.)}$