SURDS AND INDICES

S. No	Laws of Indices Formula
1	$\mathrm{X}^{\mathrm{m} *} \mathrm{X}^{\mathrm{n}}=\mathrm{X}^{\mathrm{m}+\mathrm{n}}$
	$\mathrm{X}^{\mathrm{m}} / \mathrm{X}^{\mathrm{n}}=\mathrm{X}^{\mathrm{m}-\mathrm{n}}$
	$\left(\mathrm{X}^{\mathrm{m}}\right)^{\mathrm{n}}=\mathrm{X}^{\mathrm{m} * \mathrm{n}}$
	$\mathrm{X}^{\mathrm{mn}}=\mathrm{X}^{\mathrm{m}} * \mathrm{X}^{\mathrm{n}}$
	$\mathrm{X}^{0}=1$

SURDS

Let x be rational number and n be a positive integer such that $x^{(1 / n)}=x$. Here x is called a surd of order n .

S. No	Laws of Surds Formula
	$(\mathrm{a} / \mathrm{b})^{1 / \mathrm{n}}=\mathrm{a} / \mathrm{b}$
	$\left((\mathrm{a})^{1 / \mathrm{n}}\right)^{1 / \mathrm{m}}=(\mathrm{a})^{1 / \mathrm{m} \mathrm{n}}$

Problems with solutions

1. If $5^{a}=3125$, then the value of $5^{(a-3)}$ is:

Solution

$$
\begin{aligned}
& 5^{a}=3125 \Leftrightarrow 5^{a}=5^{5} \\
& a=5 . \\
& 5^{(a-3)}=5^{(5-3)}=5^{2}=25
\end{aligned}
$$

2. $(25)^{7.5} \times(5)^{2.5} \div(125)^{1.5}=5^{?}$

Solution

Let $(25)^{7.5} \times(5)^{2.5} \div(125)^{1.5}=5^{x}$.
Then, $\frac{\left(5^{2}\right)^{7.5} \times(5)^{2.5}}{\left(5^{3}\right)^{1.5}}=5^{\mathrm{x}}$

$$
\frac{5^{(2 \times 7.5)} \times 5^{2.5}}{5^{(3 \times 1.5)}}=5 \mathrm{x}
$$

$\frac{5^{15} \times 5^{2.5}}{5^{4.5}}=5^{\mathrm{x}}$
$5^{x}=5^{(15+2.5-4.5)}$
$5^{x}=5^{13}$
$\mathrm{x}=13$.
3. $(0.04)^{-1.5}=$?

Solution

$$
\begin{aligned}
& (0.04)^{-1.5}=\left(\frac{4}{100}\right)^{-1.5} \\
& =\left(\frac{1}{25}\right)^{-(3 / 2)} \\
& =(25)^{(3 / 2)} \\
& =\left(5^{2}\right)^{(3 / 2)} \\
& =(5)^{2 \times(3 / 2)} \\
& =5^{3} \\
& =125 .
\end{aligned}
$$

4. If m and n are whole numbers such that $m^{n}=121$, the value of $(m-1)^{n+1}$ is:

Solution

We know that $11^{2}=121$.
Putting $\mathrm{m}=11$ and $\mathrm{n}=2$, we get:
$(\mathrm{m}-1)^{\mathrm{n}+1}=(11-1)^{(2+1)}=10^{3}=1000$.
5. Given that $10^{0.48}=x, 10^{0.70}=y$ and $x^{z}=y^{2}$, then the value of z is close to:

Solution

$\mathrm{x}^{\mathrm{z}}=\mathrm{y}^{2}$
$10^{(0.48 z)}=10^{(2 \times 0.70)}=10^{1.40}$
$0.48 z=1.40$
$\mathrm{z}=\frac{140}{48}=\frac{35}{12}=2.9$ (approx.)

