HEIGHT AND DISTANCE Here ABC is a right angle Triangle

Formulas	Trigonometric Identities
Sin θ = Perpendicular/ Hypotenuse =AC/AB	$\sin^2 \theta + \cos^2 \theta = 1$
$\cos \theta = \text{Adjacent/ Hypotenuse} = \text{BC/AB}$	$1 + \operatorname{Tan}^2 \theta = \sec^2 \theta$
Tan θ = Perpendicular/ Adjacent =AC/BC	$1 + \operatorname{Cot}^2 \theta = \operatorname{cosec}^2 \theta$

θ	0	30°	45°	60°	90°
$\sin(\theta)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos(\theta)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$tan(\theta)$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	U

Angle of Elevation	Angle of Depression
It of an object as seen by an observer is the	If the object is below the level of the observer,
angle between the horizontal and the line from	then the angle between the horizontal and the
the object to the observer's eye (the line of	observer's line of sight is called the angle of
sight).	depression.
Object Line of sight 0 Horizontal Observer's eye	Observer's eye Horizontal Line of sight Object
The angle of elevation of the object from the	The angle of depression of the object from the
observer is θ^0 .	observer is θ^0 .

Problems with solutions

1. The angle of elevation of the sun, when the length of the shadow of a tree 3 times the height of the tree, is:

Solution

Let assume AB be the tree and AC be its shadow.

2. Two ships are sailing in the sea on the two sides of a lighthouse. The angle of elevation of the top of the lighthouse is observed from the ships are 30° and 45° respectively. If the lighthouse is 100 m high, the distance between the two ships is:

Solution

Let AB be the lighthouse and C and D be the positions of the ships.

AB = 100 m, $\angle ACB = 30^{\circ}$ and $\angle ADB = 45^{\circ}$. <u>AB</u> = tan $30^{\circ} = \underline{1} \implies AC = AB \times 3 = 1003$ m.

AC 3

$$\frac{AB}{AD} = \tan 45^\circ = 1 \implies AD = AB = 100 \text{ m.}$$

 $CD = (AC + AD) = (1003 + 100) \text{ m}$
 $= 100(3 + 1)$
 $= (100 \text{ x } 2.73) \text{ m}$
 $= 273 \text{ m.}$

3. The angle of elevation of the sun, when the length of the shadow of a tree is equal to the height of the tree, is:

let QR represents the tree and PQ represents its shadow

Here QR = PQLet $\angle QPR = \theta$ $\tan\theta = QRPQ = 1$ $\tan^{100}\theta = QRPQ = 1$ (since QR = PQ) $\theta = 45^{\circ}$

i.e., required angle of elevation = 45°

4. The angle of elevation of a ladder leaning against a wall is 60° and the foot of the ladder is 4.6 m away from the wall. The length of the ladder is:

Let AB = wall and BC = ladder.

5. From a point P on a level ground, the angle of elevation of the top tower is 30° . If the tower is 100 m high, the distance of point P from the foot of the tower is:

