Compound Interest

1. Let principal $=\mathrm{p}$, Rate $=\mathrm{R} \%$ per annum, Time $=\mathrm{n}$ years.
2. When interest is compound annually:

Amount $=p[1+R / 100]^{n}$
3. When interest is compounded Half-Yearly:

Amount $=p[1+(R / 2) / 100]^{2 n}$
4. When interest is compounded quarterly:

$$
\text { Amount }=\mathrm{p}[1+(\mathrm{R} / 4) / 100]^{2 \mathrm{n}}
$$

5. When interest is compounded annually but time is in fraction, say $3(2 / 5)$ years.

Amount $=\mathrm{p}[1+\mathrm{R} / 100]^{3} \mathrm{p}[1+(2 / 5) \mathrm{R} / 100]$
6. When Rates are different for different years, say R1\%, R2\%, R3\% for 1st, 2nd and 3rd year respectively.
Amount $=\mathrm{p}[1+\mathrm{R} 1 / 100][1+\mathrm{R} 2 / 100][1+\mathrm{R} 3 / 100]$
7. Present worth of Rs. x due n years hence is given by:

Present Worth= x / $(1+\mathrm{R} / 100)$

Problems with solutions

1. The difference between simple and compound interests compounded annually on a certain sum of money for 2 years at 4% per annum is Re. 1. The sum (in Rs.) is:

Solution

Let the sum be Rs. x. Then,
C.I. $=\left[x\left(1+\frac{4}{100}\right)^{2}-x\right]=\left(\frac{676}{625} x-x\right)=\frac{51}{625} x$.
S.I. $=\left(\frac{\mathrm{x} \mathrm{x} \mathrm{4} \mathrm{x} \mathrm{2}}{100}\right)=\frac{2 \mathrm{x}}{25}$.
$\frac{51 \mathrm{x}}{625}-\frac{2 \mathrm{x}}{25}=1$
$\mathrm{x}=625$.
2. What is the difference between the compound interests on Rs. 5000 for $1^{\frac{1}{2}}$ years at 4% per annum compounded yearly and half-yearly?

Solution

$\begin{aligned} & \text { C.I. when interest } \\ & \text { compounded yearly }\end{aligned} \quad=$ Rs. $\left[5000 \times\left(1+\frac{4}{100}\right) \times\left(1+\frac{\frac{1}{2} \times 4}{100}\right)\right]$

$$
\begin{aligned}
& =\text { Rs. }\left(5000 \times \frac{26}{25} \times \frac{51}{50}\right) \\
& =\text { Rs. } 5304 .
\end{aligned}
$$

$\begin{aligned} & \text { C.I. when interest is } \\ & \text { compounded half-yearly }\end{aligned}=$ Rs. $\left[5000 \times\left(1+\frac{2}{100}\right)^{3}\right]$

$$
\begin{aligned}
& =\text { Rs. }\left(5000 \times \frac{51}{50} \times \frac{51}{50} \times \frac{51}{50}\right) \\
& =\text { Rs. } 5306.04
\end{aligned}
$$

Difference $=$ Rs. $(5306.04-5304)=$ Rs. 2.04
3. The compound interest on Rs. 30,000 at 7\% per annum is Rs. 4347. The period (in years) is: Solution

Amount $=$ Rs. $(30000+4347)=$ Rs. 34347.
Let the time be n years.
Then, $30000\left(1+\frac{7}{100}\right)^{n}=34347$

$$
\left(\frac{107}{100}\right)^{\mathrm{n}}=\frac{34347}{30000}=\frac{11449}{10000}=\left(\frac{107}{100}\right)^{2}
$$

$\mathrm{n}=2$ years.
4. What will be the compound interest on a sum of Rs. 25,000 after 3 years at the rate of 12 p.c.p.a.?
4. What will be the compound interest on a sum of Rs. 25,000 after 3 years at the rate of 12 p.c.p.a.?

Solution

$$
\begin{aligned}
\text { Amount } & =\text { Rs. }\left[25000 \times\left(1+\frac{12}{100}\right)^{3}\right] \\
& =\text { Rs. }\left(25000 \times \frac{28}{25} \times \frac{28}{25} \times \frac{28}{25}\right)
\end{aligned}
$$

$$
=\text { Rs. } 35123.20
$$

\therefore C.I. $=$ Rs. $(35123.20-25000)=$ Rs. 10123.20
5. The effective annual rate of interest corresponding to a nominal rate of 6% per annum payable half-yearly is:

Solution

Effective rate $=(106.09-100) \%=6.09 \%$

