BOATS AND STREAMS

S.No	Sub Topic	Details	Formula
1	Downstream	In water, the direction along the stream is called downstream. If boat speed in still water is u km$/ \mathrm{hr}$ \& the stream speed is v km/hr, then:	Speed downstream $=(\mathrm{u}+\mathrm{v}) \mathrm{km} / \mathrm{hr}$.
2	upstream	In water, the direction against stream is called upstream.	Speed upstream $=(\mathrm{u}-\mathrm{v}) \mathrm{km} / \mathrm{hr}$.
3	Speed in still water	If the speed downstream is a km/hr and the speed upstream is $\mathrm{bm} / \mathrm{hr}$	Speed in still water $=(\mathrm{a}+\mathrm{b}) / 2$ $\mathrm{~km} / \mathrm{hr}$.
4	Rate of stream	If the speed downstream is a km/hr and the speed upstream is b km$/ \mathrm{hr}$	Rate of stream $=(\mathrm{a}+\mathrm{b}) / 2 \mathrm{~km} / \mathrm{hr}$.

Problems with solutions

1. A man's speed with the current is $15 \mathrm{~km} / \mathrm{hr}$ and the speed of the current is $2.5 \mathrm{~km} / \mathrm{hr}$. The man's speed against the current is:

Solution

Man's rate in still water $=(15-2.5) \mathrm{km} / \mathrm{hr}=12.5 \mathrm{~km} / \mathrm{hr}$.
Man's rate against the current $=(12.5-2.5) \mathrm{km} / \mathrm{hr}=10 \mathrm{~km} / \mathrm{hr}$.
2. In one hour, a boat goes $11 \mathrm{~km} / \mathrm{hr}$ along the stream and $5 \mathrm{~km} / \mathrm{hr}$ against the stream. The speed of the boat in still water (in $\mathrm{km} / \mathrm{hr}$) is:

Solution

Speed in still water $=\frac{1}{2}(11+5) \mathrm{kmph}=8 \mathrm{kmph}$.
3. The speed of a boat in still water in $15 \mathrm{~km} / \mathrm{hr}$ and the rate of current is $3 \mathrm{~km} / \mathrm{hr}$. The distance travelled downstream in 12 minutes is:

Solution

Speed downstream $=(15+3) \mathrm{kmph}=18 \mathrm{kmph}$.
Distance travelled $=\left(18 \times \frac{12}{60}\right)_{\mathrm{km}=3.6 \mathrm{~km} .}$
4. A man can row at 5 kmph in still water. If the velocity of current is 1 kmph and it takes him 1 hour to row to a place and come back, how far is the place?

Solution

Speed downstream $=(5+1) \mathrm{kmph}=6 \mathrm{kmph}$.
Speed upstream $=(5-1) \mathrm{kmph}=4 \mathrm{kmph}$.
Let the required distance be x km .
Here $\frac{x}{6}+\frac{x}{4}=1$
$2 x+3 x=12$
$5 \mathrm{x}=12$
$\mathrm{x}=2.4 \mathrm{~km}$.
5. A boatman goes 2 km against the current of the stream in 1 hour and goes 1 km along the current in 10 minutes. How long will it take to go 5 km in stationary water?

Solution

Rate downstream $=\frac{1}{10} \times 60 \mathrm{~km} / \mathrm{hr}=6 \mathrm{~km} / \mathrm{hr}$.
Rate upstream $=2 \mathrm{~km} / \mathrm{hr}$.
Speed in still water $=\frac{1}{2}(6+2) \mathrm{km} / \mathrm{hr}=4 \mathrm{~km} / \mathrm{hr}$.
Required time $=\frac{5}{4} \mathrm{hrs}=1 \frac{1}{4} \mathrm{hrs}=1 \mathrm{hr} 15 \mathrm{~min}$.

