BOATS AND STREAMS

S.No	Sub Topic	Details	Formula
1	Downstream	In water, the direction along the	Speed downstream = $(u + v)$ km/hr.
		stream is called downstream. If	
		boat speed in still water is u km/hr	
		& the stream speed is v km/hr,	
		then:	
2	upstream	In water, the direction against	Speed upstream = $(u - v)$ km/hr.
		stream is called upstream.	
3	Speed in still	If the speed downstream is a km/hr	Speed in still water= $(a + b) / 2$
	water	and the speed upstream is b km/hr	km/hr.
4	Rate of	If the speed downstream is a km/hr	Rate of stream = $(a + b) / 2 \text{ km} / \text{hr}.$
	stream	and the speed upstream is b km/hr	

Problems with solutions

1. A man's speed with the current is 15 km/hr and the speed of the current is 2.5 km/hr. The man's speed against the current is:

Solution

Man's rate in still water = (15 - 2.5) km/hr = 12.5 km/hr.

Man's rate against the current = (12.5 - 2.5) km/hr = 10 km/hr.

2. In one hour, a boat goes 11 km/hr along the stream and 5 km/hr against the stream. The speed of the boat in still water (in km/hr) is:

Solution

Speed in still water = $\frac{1}{2}(11 + 5)$ kmph = 8 kmph.

3. The speed of a boat in still water in 15 km/hr and the rate of current is 3 km/hr. The distance travelled downstream in 12 minutes is:

Solution

Speed downstream = (15 + 3) kmph = 18 kmph.

Distance travelled =
$$\left(18 \text{ x } \frac{12}{60}\right)_{\text{km}} = 3.6 \text{ km}.$$

4. A man can row at 5 kmph in still water. If the velocity of current is 1 kmph and it takes him 1 hour to row to a place and come back, how far is the place?

Solution

Speed downstream = (5 + 1) kmph = 6 kmph.

Speed upstream = (5 - 1) kmph = 4 kmph.

Let the required distance be x km.

Here $\frac{x}{6} + \frac{x}{4} = 1$ 2x + 3x = 12 5x = 12 x = 2.4 km.

5. A boatman goes 2 km against the current of the stream in 1 hour and goes 1 km along the current in 10 minutes. How long will it take to go 5 km in stationary water?

Solution

Rate downstream = $\frac{1}{10} \times 60 \text{ km/hr} = 6 \text{ km/hr}.$

Rate upstream = 2 km/hr.

Speed in still water = $\frac{1}{2}(6+2)$ km/hr = 4 km/hr. Required time = $\frac{5}{4}$ hrs = $1\frac{1}{4}$ hrs = 1 hr 15 min.